Электродвигатель с генератором в одном корпусе

Электродвигатель с генератором в одном корпусе

Сверхэффективный мотор-генератор Роберта Александера

В октябре 1975 года изобретатель из Калифорнии, Роберт Александер, представил публике усовершенствованный привод для автомобиля. По мысли изобретателя, этот электрический привод должен был в ближайшем будущем избавить владельцев автомобилей от необходимости использовать сжигаемое топливо, от лишнего шума, и от потребности в постоянной подзарядке аккумуляторов.

Прибывшие на демонстрацию эксперты были сильно озадачены, ведь казалось, что энергия получается из «ничего». Тем не менее, автомобиль легко ездил без топлива со скоростью 36 миль в час. На сомнения экспертов изобретатель ответил, что машина ездит, и ей все равно на их доводы. Начальную мощность обеспечивал переделанный электродвигатель в 7/8 лошадиных сил.

Электромотор был переделан так, чтобы на его выходе получалось 12 вольт, иначе выходная мощность оказалась бы слишком большой. Сыновья Роберта и его партнер Джеймс Смит за 45 дней переделали автомобиль, чтобы продемонстрировать возможность езды без топлива и без загрязнения окружающей среды.

На демонстрацию была приглашена пресса, а позже (когда патент US3913004 был уже получен) одному из журналистов поведали детали проекта: вращение электродвигателя начинается от батареи, гидравлическая и воздушная системы автомобиля приходят в действие, при этом батарея успевает перезаряжаться от генератора. На эту переделку Александер потратил всего 500 долларов.

Александер и Смит сами оказались не в состоянии полностью объяснить, каким же образом получается эта энергия из «ничего», тем не менее они отметили, что люди уже давно в состоянии сделать гораздо больше того, чем они знают и понимают, и за примерами далеко ходить не нужно — достаточно взглянуть на этот автомобиль, который ездит. Изобретатели назвали продемонстрированное явление «Super Power», поскольку здесь используется целых три типа мощности для достижения поставленной цели.

В основе конструкции — трансформатор (преобразующее устройство), который является одновременно ротором генератора (пересекается магнитным потоком). Выход переменного тока в результате является продуктом двух электромагнитных действий. Напомним, что скорость изменения ускорения — третья производная координаты — это рывок.

Ротор представляет собой сердечник трансформатора, и имеет на себе группы парных обмоток. В каждой секции ротора по две обмотки, одна из которых работает как первичная обмотка трансформатора и как моторная обмотка, а вторая — как вторичная обмотка трансформатора и как генераторная обмотка. При этом на статоре расположены только постоянные магниты.

В работе генератора используются известные технологии управления и взаимодействия с магнитным полем. Трансформируемая и генерируемая мощности синхронно сочетаются, что и приводит к увеличению выходной мощности.

Первичные обмотки содержат меньшее количество витков чем вторичные обмотки, в которых при пересечении силовых магнитных линий наводится большая ЭДС, чем у источника постоянного тока (которым выступает батарея). Магнитное поле статора пересекает ротор, и мотивирует его к движению, при этом генерирует во вторичных обмотках энергию.

Выход переменного тока во вторичных обмотках является по своей сути синхронизированной функцией трансформируемой энергии из первичных обмоток, объединенных в общих пазах ротора со вторичными обмотками, и генерируемой энергии. В итоге сила тока и напряжение на выходе соответственно увеличиваются.

В одной из изготовленных авторами установок, имеющей четыре коллекторные щетки и 20 ламелей, и содержащей 20 секторов на роторе, первичные обмотки состояли из нескольких витков проводника, чтобы эффективно проводиться во вращение от 48 вольт постоянного тока при 25 амперах, то есть 1200 Ватт было необходимо для вращения с частотой 1750 оборотов в минуту.

В то же самое время вторичные обмотки состояли из такого числа витков, чтобы эффективно получать на выходе 60 циклов в секунду (путем трансформации и генерирования) при напряжении в 110 вольт и с током в 32 ампера, то есть на выходе можно было получать 3520 Ватт.

Халявное електричество Н-н-н-а-а-д-д-оооо ?

Всем привет, сам я в електричестве не разбираюсь, хотя знаю, что в розетку лучше ничего не совать, но в наш век безумного изобретательства и альтернативного творчества, уже ничему не удивляюсь (ну быть может вечному двигателю… да и то чуть чуть :))

Сегодня случайно нашёл источник дармового и бесплатного электричества на дачу (ну так заявляет автор и продавец изобретения), насколько это реально я не знаю, будем считать «Мопед не мой, я только разместил»

Изобретение относится к области альтернативной энергетики и может быть использовано при построении мобильных и стационарных источников механической энергии. Устройство является электромагнитно-механической реализацией двигателя ДВС. Время работы АИП не ограничено. Для автономной работы АИП не требуется топливо, ветер или солнце. Общий принцип работы АИП это ротовертера + умножитель энергии + инвертор.
Комплектация АИП в меню: tenkot.nethouse.ru/page/956949
Срок службы АИП(автономного источника питания) 15 лет. Гарантия 5(пять) лет. АИП способен обеспечить электроэнергией работы все бытовых приборов, электрокотлов(кроме электродных), асинхронных двигателей, сварочных аппаратов и электроинструментов. Выход на всех моделях на 220V и 380V.
Технические характеристики:
Выход на всех моделях на 220V и 380V
Применение: Для дачи, Для частного дома, Для промышленных нужд
Тип напряжения: Однофазный/Трехфазный
Принцип стабилизации: Сервоприводный
Мощность (кВА): 50
Выходная частота: 50 Гц
Максимальный выходной ток 220V: -280 А (220 вольт)
Максимальный выходной ток 380V: — 130 А (380 вольт)
Запрещена нагрузка одновременно двух выходов на 380 и 220 вольт!
Форма выходного сигнала: чистая синусоида
Шум: 40 ДБ
Режим работы: Непрерывный
Способ установки: Напольный
Тип охлаждения: Воздушное (конвекционное и принудительное)
Дисплей: Цифровой
Задержка включения: 6 секунд, 12 секунд
Номинальное выходное напряжение (В): 220/380
Отклонение выходных напряжений: ±3%
Время реакции на изменение напряжения (мс): 20
Защита от перегрева трансформатора, откл. При: ≥ 80-90 °С
Защита от перегрузки по току: Автоматический выключатель
Степень защиты от внешних воздействий по ГОСТ 14254-96: IP20
Температура эксплуатации (°С): -30…+40
Температура хранения (°С): -45…+45
Относительная влажность (%): 95
Габаритные размеры (мм): 435 х 395 х 770
Вес (кг): 60

удовольствие называется АИП 50/220-380, стоимость 205 000 руб. (это самый дорогой, есть и дешевле)

вот видео работы

ну и фото чудо агрегата

Получается, если внедрить такую хреновину в автомобиль, то потребуется только стартовый аккумулятор (ну или суперконденсатор) который будет запускать установку и далее катайся в своё удовольствие ?
вот график рекомендуемого ТО
Техническое обслуживание.
Все работы проводить с неработающим генератором!
№1 проводиться после 2500 кВт часов работы:
— протяжка креплений двигателя и генератора
— протяжка клемовых соединений
№2 проводиться через 5000 кВт час работы генератор
— протяжка креплений двигателя и генератора
— протяжка клемовых соединений
№3 проводиться через 10000 кВт час работы генератор
— протяжка креплений двигателя и генератора
— протяжка клемовых соединений
— замена подшипников на электродвигателе и генераторе(подшипники в комплекте)

ни тебе замены масла, ни фильтров… просто мечта…

Короче интересно мнение, насколько эта хреновина вообще может работать, да и вообще :)) вдруг у нас опять изобрели что то суперское, но скрывают от народа из-за «теории всеобщего заговора» и надо срочно бежать покупать (пусть стоит, вдруг пригодиться в гараже )

ну и про заговор :))

Электродвигатель с генератором в одном корпусе

Евросамоделки — только самые лучшие самоделки рунета! Как сделать самому, мастер-классы, фото, чертежи, инструкции, книги, видео.

  • Главная
  • Каталог самоделки
  • Дизайнерские идеи
  • Видео самоделки
  • Книги и журналы
  • Конкурс самоделок & Обратная связь
  • Лучшие самоделки
  • Самоделки для дачи
  • Самодельные приспособления
  • Автосамоделки, для гаража
  • Электронные самоделки
  • Самоделки для дома и быта
  • Альтернативная энергетика
  • Мебель своими руками
  • Строительство и ремонт
  • Самоделки для рыбалки
  • Поделки и рукоделие
  • Самоделки из материала
  • Самоделки для компьютера
  • Самодельные супергаджеты
  • Другие самоделки
  • Материалы партнеров

Мотор-генератор своими руками (опыты, видео, принцип работы)

Изобретение относится к области электротехники и электроэнергетики, в частности к способам и оборудованию для генерирования электрической энергии, и может быть использовано в автономных системах электроснабжения, в автоматике и бытовой технике, на авиационном, морском и автомобильном транспорте.

Читайте также  Чери тигго аналоги генератора

За счет нестандартного способа генерации, и оригинальной конструкции мотора-генератора, режимы генератора и электромотора, объединены в одном процессе, и неразрывно связаны. В результате чего, при подключении нагрузки, взаимодействие магнитных полей статора и ротора образует вращающий момент, который по направлению совпадает с моментом, создаваемым внешним приводом.

Другими словами, при увеличении мощности потребляемой нагрузкой генератора, ротор мотора-генератора начинает ускоряться, и соответственно понижается мощность, потребляемая внешним приводом.

Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента.

Результаты экспериментов, которые привели к изобретению мотора-генератора.

Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше, чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента. Эта информация подтолкнула нас на проведение ряда экспериментов с кольцевой обмоткой, результаты которых мы покажем на этой странице. Для экспериментов, на тороидальный сердечник, были намотаны 24шт., не зависимые обмотки, с одинаковым количеством витков.

1) Вначале вес обмотки были включены последовательно, выводы на нагрузку расположены диаметрально. В центре обмотки был расположен постоянный магнит с возможностью вращения.

После того как магнит с помощью привода приводился в движение, подключалась нагрузка и лазерным тахометром измерялись обороты привода. Как и следовало ожидать, обороты приводного двигателя начинали падать. Чем большую мощность потребляла нагрузка, тем сильнее падали обороты.

2) Для лучшего понимания процессов происходящих в обмотке, вместо нагрузки был подключен миллиамперметр постоянного тока.
При медленном вращении магнита, можно наблюдать, какая полярность и величина выходного сигнала, в данном положении магнита.

Из рисунков видно, когда полюсы магнита, находятся напротив выводов обмотки (рис. 4;8), ток в обмотке равен 0. При положении магнита, когда полюсы находятся в центре обмотки, мы имеем максимальное значение тока (рис. 2;6).

3) Нa следующем этапе экспериментов, использовалась только одна половина обмотки. Магнит также медленно вращался, и фиксировались показания прибора.

Показания прибора полностью совпадали с предыдущим экспериментом (рис 1-8).

4) После этого к магниту подключили внешний привод и начали его вращать на максимальных оборотах.

При подключении нагрузки, привод начал набирать обороты!

Другими словами, при взаимодействии полюсов магнита, и полюсов образующихся в обмотке с магнитопроводом, при прохождении через обмотку тока, появился вращающий момент, направленный по ходу вращающего момента созданного приводным двигателем.

Рисунок 1, идет сильное торможение привода при подключении нагрузки. Рисунок 2, при подключении нагрузки привод начинает ускоряться.

5) Что бы понять что происходит, мы решили создать карту магнитных полюсов, которые появляются в обмотках при прохождении через них тока. Для этого была проведена серия экспериментов. Обмотки подключались в разных вариантах, а на концы обмоток подавались импульсы постоянного тока. При этом на пружине был закреплен постоянный магнит, и по очереди располагался рядом с каждой из 24 обмоток.

По реакции магнита (отталкивался он или притягивался) была составлена карта проявляющихся полюсов.

Из рисунков видно, как проявлялись магнитные полюсы в обмотках, при различном включении (желтые прямоугольники на рисунках, это нейтральная зона магнитного поля).

При смене полярности импульса, полюсы как и положено менялись на противоположные, по этому разные варианты включения обмоток, нарисованы при одной полярности питания.

6) Па первый взгляд, результаты на рисунках 1 и 5 идентичны.

При более подробном анализе, стало ясно, что распределение полюсов по окружности и «размер» нейтральной зоны довольно сильно отличаются. Сила с которой магнит притягивался или отталкивался от обмоток и магнитопровода показана градиентной заливкой полюсов.

7) При сопоставлении данных экспериментов описанных в пунктах 1 и 4, кроме кардинальной разницы в реакции привода на подключение нагрузки, и существенной разницы в «параметрах» магнитных полюсов, были выявлены и другие отличия. При проведении обоих экспериментов, параллельно нагрузке был включен вольтметр, а последовательно с нагрузкой включался амперметр. Если показания приборов из первого эксперимента (пункт 1), взять за 1, то во втором эксперименте (пункт 4), показание вольтметра так же было равно 1. По показания амперметра составляло 0,005 от результатов первого эксперимента.

Исходя из изложенного в предыдущем пункте, логично предположить, если в незадействованной части магнитопровода, сделать немагнитный (воздушный) зазор, то сила тока в обмотке должна увеличиться.

После того как был сделан воздушный зазор, магнит снова подключили к приводному двигателю, и раскрутили на максимальные обороты. Сила тока действительно возросла в несколько раз, и стала составлять примерно 0,5 от результатов эксперимента по пункту 1,
но при этом появился тормозной момент на привод.

9) Способом, который описан в пункте 5, была составлена карта полюсов данной конструкции.

10) Сопоставим два варианта

Не трудно предположить, если увеличить воздушный зазор в магнитопроводе, геометрическое расположение магнитных полюсов по рисунку 2, должно приблизиться к такому расположению как в рисунке 1. А это в свою очередь, должно привести к эффекту ускорения привода, который описан в пункте 4 (при подключении нагрузки, вместо торможения, создается добавочный момент к вращающему моменту привода).

11) После того как зазор в магнитопроводс был увеличен до максимума (до краев обмотки), при подключении нагрузки вместо торможения, привод снова начал набирать обороты.

При этом карта полюсов обмотки с магнитопроводом выглядит так:

На основе предложенного принципа генерации электроэнергии, можно конструировать генераторы переменного тока, которые при повышении электрической мощности в нагрузке, не требуют повышения механической мощности привода.

Принцип работы Мотора Генератора.

Согласно явлению электромагнитной индукции при изменении магнитного потока проходящего через замкнутый контур, в контуре возникает ЭДС.

Согласно правилу Ленца: Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. При этом не имеет значения, как именно магнитный поток, движется по отношению к контуру (Рис. 1-3).

Способ возбуждения ЭДС в нашем моторе-генераторе аналогичен рисунку 3. Он позволяет использовать правило Ленца для увеличения вращающего момента на роторе (индукторе).

1) Обмотка статора
2) Магнитопровод статора
3) Индуктор (ротор)
4) Нагрузка
5) Направление вращения ротора
6) Центральная линия магнитного поля полюсов индуктора

При включении внешнего привода, ротор (индуктор) начинает вращаться. При пересечении начала обмотки магнитным потоком одного из полюсов индуктора в обмотке индуцируется ЭДС.

При подключении нагрузки, в обмотке начинает течь ток и полюса возникшего в обмотках магнитного поля согласно правилу Э. X. Ленца направлены на встречу возбудившего их магнитного потока.
Так как обмотка с сердечником расположена по дуге окружности, то магнитное поле ротора, движется вдоль витков (дуги окружности) обмотки.

При этом в начале обмотки согласно правилу Ленца, возникает полюс одинаковый с полюсом индуктора, а на другом конце ротивоположный. Так как одноименные полюса отталкиваются, а противоположные притягиваются, индуктор стремится принять положение, которое соответствует действию этих сил, что и создает добавочный момент, направленный по ходу вращения ротора. Максимальная магнитная индукция в обмотке достигается в момент, когда центральная линия полюса индуктора находится напротив середины обмотки. При дальнейшем движении индуктора, магнитная индукция обмотки уменьшается, и в момент выхода центральной линии полюса индуктора за пределы обмотки, равна нулю. В этот же момент, начало обмотки начинает пересекать магнитное поле второго полюса индуктора, и согласно правилам, описанным выше, край обмотки от которого начинает отдаляться первый полюс начинает его отталкивать с нарастающей силой.

Рисунки:
1) Нулевая точка, полюсы индуктора (ротора) симметрично направлены на разные края обмотки в обмотке ЭДС=0.
2) Центральная линия северного полюса магнита (ротора) пересекла начало обмотки, в обмотке появилась ЭДС, и соответственно проявился магнитный полюс одинаковый с полюсом возбудителя (ротора).
3) Полюс ротора находится в центре обмотки, и в обмотке максимальное значение ЭДС.
4) Полюс приближается к концу обмотки и ЭДС снижается до минимума.
5) Следующая нулевая точка.
6) Центральная линия южного полюса входит в обмотку и цикл повторяется (7;8;1).

Читайте также  Шкив генератора бмв е60

Видео-ролик первого эксперимента:

Видео-ролик второго эксперимента:

Проверка возможностей автомобильного генератора в качестве электродвигателя.

Решил провести эксперимент, по возможности использования генератора от легкового автомобиля, как тягового двигателя с прямым приводом на колесо, для велосипеда или что-либо подобного.
У меня как раз есть исправный генератор, но использовать его в автомобиль я не могу, как и некоторые другие вещи, но зато попробую провести этот эксперимент сам. В интернете на специализированных форумах есть размышления, что так не делают, что и в конструкции генератора специально особым образом подобраны формы ротора и статора, для работы его как генератора. Да и наличие отдельной катушки возбуждения усложняет конструкцию. Но из достоинств – генератор не создает практически никаких сопротивлений вращению, если на него не подан ток, и он есть за бесплатно. Заниматься самому математическим анализом реализации такой возможности, нет достаточного опыта и данных, пока (если кто разложит все по полочкам — буду признателен).
Схема подключения генератора:

Генератор был аккуратно разобран:

Из него был удален диодный мост и схема регулятора напряжения, подключены провода к обмоткам генератора, и щеточному узлу катушки возбуждения:

Затем все было собрано аккуратно и стало иметь такой вид:

Скрепка – торчащая из задней крышки генератора, фиксирует подпружиненные щетки в заглубленном состоянии, что позволяет правильно установить заднюю крышку, ничего не сломав. Затем скрепка вытягивается, и щетки упираются в коллектор.

Далее, из имеющегося блока электроусилителя руля, работающего на трехфазный мотор, изымаем блок силовых транзисторов. К сожалению, использовать его как полноценный блок управления трехфазным мотором (BLDC) нельзя.

Поэтому подключим блок силовых транзисторов к имеющейся плате 2CAN (описано ранее), через самодельную плату с драйверами управления транзисторами. А так как лето у нас короткое, то плата сделана самым простым и быстрым проверенным способом лазерной печати и утюга:

Общая схема получилась примерно такая:

Так как на плате 2CAN разведены не все выводы платы и микроконтроллера, пришлось добавить соединений навесным монтажом:

Написана простая программа управления трехфазным двигателем, используя таймер №1.Пока решил не использовать датчики положения ротора, ограничившись только регулировкой частоты вращения и заполнением ШИМ (амплитуду синусоид). Если генератор покажет оптимистичные характеристики, то тогда и усложню схему и программу. Форму напряжения выбрал синусоидальную, коэффициенты для таймера рассчитал простой программой на javascript, (позволяет писать программы в любом текстовом редакторе и запускать на выполнение любым браузером), файл sine.html (в zip) прилагаю ниже.

При открытии его браузером, можно просмотреть значения, и скопировать в буфер обмена:

Такая конструкция получилось в итоге:

Форма результирующего напряжения двух фаз такая (осциллограф двухлучевой к сожалению):

(после простого R-C фильтра для щупа осциллографа), а так без фильтра на прямую:

В качестве источника питания был выбран аккумулятор 12В 7А, через предохранитель 30 Ампер питание подавалось на схему. Обороты генератора, которые меня интересовали, были в пределах от 0 до 420 оборотов в минуту. Исходя из того, что если на шкив генератора надеть колесо диаметром 20 см, и при этом скорость максимальную ограничить в 16км/час. Подключим генератор:

Примитивным способом оценить крутящий момент, развиваемый генератором, решили с помощью поднятия груза, подвешенного за веревку к шкиву генератора.

Далее все расчеты довольно примитивны, и возможно есть ошибки. В качестве груза выбрал две 5-литровых емкости с водой. При диаметре шкива 5,5см, генератор с уверенно поднимал этот груз при 50 % заполнении ШИМ таймера на высоту 50 см за 3 секунды. Ток от аккумулятора составлял порядка 16 Ампер, но и напряжение на нем падало до 11 Вольт (слабоват аккумулятор). Получается, гарантирован крутящий момент примерно 2,75 ньютона на метр, при 3 оборотах в секунду. Сила тяги генератора с колесом диаметром 20см, одетого напрямую на вал, составила бы 12,5 ньютона (условная скорость составила бы примерно 7км/час). Для ребёнка, стоящего на роликах может быть и хватит. Для реализации полной мощности потребовался бы аккумулятор большей емкости, и более толстые провода. Без нагрузки, генератор вращается без подачи тока на катушку возбуждения (как несинхронный трехфазный электродвигатель). По идее, учитывая, что при потребляемой мощности в 176 ватт, получаем мощность на совершение работы, очень примерно оцененной в 16 Ватт, КПД полученного устройства не радует. Даже если удастся увеличить КПД использованием датчиков положения ротора в два -три раза, тяга маловата все таки для взрослого человека. Значительная часть тока тратится на катушку возбуждения, при этом, в зависимости от нагрузки, оборотов и температуры генератора составляет это порядка 5 — 12 Ампер. Да и генератор в родном рабочем режиме крутится на горазбо более высоких оборотах (2100 — 18000 об/мин). Выходить на рабочие токи больше 30 Ампер в схеме посчитал нецелесообразным. Конечно, используя мотор с постоянными магнитами, можно значительно поднять КПД устройства. Но все равно, значительные токи в узлах схемы, при напряжении питания в 12 Вольт, не позволяют добиться приемлемых параметров при длительной работе мотора в тяговом режиме. А перематывать катушки статора генератора под другое напряжение, количество оборотов, делать ротор с неодимовыми магнитами — это уже надо быть сильно мотивированным на это. Практичнее переходить на готовые, относительно легко доступные BLDC моторы для велосипедов, скутеров и т.д. с напряжением 36 Вольт и более. Также был подключен оригинальный двигатель, и это совсем другая тема и возможности:

В автомобильных вентиляторах охлаждения, часто применяются двухфазные электродвигатели с постоянными магнитами, выдавая мощность под 300ватт (но коррозия и большие токи зачастую выводят из строя компактную схему управления, встроенную в мотор).

Других целей больше не было, остался удовлетворенным полученным отрицательным результатом

Приведу настройки таймера:

А табличные значения получаем как написано выше (редактируем имя распечатываемого на экран массива ) Плохо что видео нельзя тут приложить, довольно забавно. Если есть вопросы – без проблем задавайте, пишите

С уважением, Астанин Сергей, ICQ 164487932.

Добавил сам проект, правда внутри много лишнего осталось от проекта общения по CAN, но мотору не мешает.

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

26.07.2013

Система генератор — двигатель

Для широкого и плавного регулирования частоты вращения электродвигателя постоянного тока применяется система генератор — двигатель (Г — Д). Основной принцип этой системы заключается в изменении приложенного к якорю двигателя напряжения при неизменном напряжении цепи возбуждения.

Система Г—Д (рис. 1) состоит из двигателя постоянного тока с независимым возбуждением М2, непосредственно связанного с рабочим механизмом (исполнительный двигатель). Он питается электрической энергией от генератора G, приводимого во вращение двигателем M1. Обмотки возбуждения генератора LG и двигателя LM2 получают питание от независимого источника постоянного тока с неизменным напряжением.

Первичный двигатель M1, вращающий якорь генератора G, представляет собой механический или электрический двигатель, причем приводимый им генератор не требует ни реверсирования, ни регулирования частоты вращения.

Читайте также  Щелчки при отпускании сцепления поло седан

Основным требованием, предъявляемым к первичному двигателю, является жесткость его механической характеристики, поэтому механические двигатели снабжают всережимными регуляторами частоты вращения, а электрические выбирают с жесткой характеристикой. Итак, первичный двигатель вращается с n = const и не реверсируется

Исполнительный двигатель управляется изменением значения и направления тока в обмотках возбуждения LG и LM2.

Механическая характеристика исполнительного двигателя в си-стеме Г—Д подобна механическим характеристикам двигателя с независимым возбуждением.

Естественная механическая характеристика 0 (см. рис. 2.3) возможна при номинальной частоте вращения генератора и отсутствии добавочных резисторов в цепях возбуждения генератора и исполнительного двигателя.

Ее наклон несколько больше, чем характеристики двигателя, работающего от сети, так как к сопротивлению якоря двигателя добавляется сопротивление якоря генератора.

При увеличении сопротивления реостата R1 уменьшаются ток возбуждения генератора и его э.д.с. Частота вращения двигателя М2 при этом уменьшится (характеристика 3).

Увеличение сопротивления реостата R2 вызывает уменьшение магнитного потока двигателя М2, частота вращения его увеличится (характеристика 2).

Двигатель реверсируется изменением направления тока в обмотке возбуждения генератора, при этом меняется направление его э. д. с. и тока в цепи якоря двигателя (магнитный поток двигателя остается неизменным).

Механические характеристики системы Г—Д жесткие. Для предотвращения поломок механизма необходимо ограничивать максимальный момент двигателя М2, что достигается смягчением характеристик.

Существуют следующие способы смягчения механических характеристик исполнительного двигателя: применение исполнительного электродвигателя со смешанным возбуждением; применение генератора со смешанным возбуждением и встречно включенной последовательной обмоткой.

Использование последовательной обмотки у исполнительного двигателя (рис. 2, а) позволяет получить более мягкие характеристики (рис. 2, б) по сравнению с характеристиками двигателя только с независимым возбуждением. Однако этот способ имеет недостаток, заключающийся в том, что при реверсировании двигателя изменяется направление тока в обмотке LM2.2 и она начинает противодействовать обмотке LM2.1, размагничивая двигатель. Во избежание этого последовательную обмотку включают не непосредственно в цепь якоря, а через мостовой полупроводниковый выпрямитель U, обеспечивающий постоянное направление тока в ней.
Применение размагничивающей обмотки генератора лишено указанного недостатка, поэтому используется наиболее часто.

Принцип смягчающего действия размагничивающей обмотки LG2 (рис. 3, а) заключается в следующем: с увеличением нагрузки исполнительного двигателя ток якоря увеличивается, размагничивающее действие обмотки возрастает, э.д.с. генератора и частота вращения двигателя уменьшаются.

Механические характеристики показаны на рис. 3, б. Искривленная форма характеристик 0,1,3 объясняется насыщением генератора. При насыщенном генераторе размагничивающее влияние обмотки меньше, чем при ненасыщенном, в начале участка характеристики более жесткие, а затем при больших нагрузках насыщение исчезает и характеристики становятся круче. Если же ток независимой обмотки возбуждения генератора невелик и насыщение отсутствует, характеристика становится прямой (характеристика 2).

При изменении направления тока в независимой обмотке возбуждения генератора меняется направление тока в якоре и последовательной обмотке возбуждения; таким образом, размагничивающее действие последовательной обмотки сохраняется.

Торможение исполнительного двигателя в системе Г — Д выполняют всеми методами, рассмотренными в статье «Регулирование частоты вращения, пуск, реверсирование и торможение электродвигателей постоянного тока».

Преимущества системы Г — Д:

  • возможность плавного регулирования частоты вращения в широком диапазоне до 16:1;
  • быстрый разгон исполнительного двигателя без помощи пускового реостата, т. е. с минимальными потерями энергии;
  • легкий пуск первичного двигателя, вращающего невозбужденный генератор;
  • быстрое и четкое торможение исполнительного электродвигателя.

Недостатки системы Г — Д:

  • низкий к.п.д. всей системы, вызванный многократным преобразованием энергии;
  • большие массы, стоимость и габаритные размеры, инерционность.

Следует отметить, что снижение к. п. д. в значительной мере компенсируется возможностью экономичного управления исполнительным электродвигателем при его пуске и регулировании частоты вращения. Эта экономия энергии особенно заметна в электроприводах, требующих частых пусков и реверсов двигателя.

Вместо системы Г — Д целесообразно использовать систему управляемый выпрямитель — двигатель постоянного тока (УВ—Д), силовая цепь которой приведена на рис. 4.

К якорю двигателя М приложено выпрямленное напряжение, регулируемое с помощью полупроводникового выпрямителя VI — V6, собранного по мостовой схеме. Силовая цепь выпрямителя состоит из трех тиристоров VI — V3 и трех неуправляемых диодов V4 — V6. Управление осуществляют изменением фазы открытия тиристоров.

Система УВ — Д имеет по сравнению с системой Г—Д следующие преимущества: отсутствует вращающийся преобразователь; высокий к.п.д. (к.п.д. выпрямителя 0,96 — 0,99); малая инерционность.

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

С разбора CD-rom скопилось уже некоторое количество бесколлекторных двигателей постоянного тока (это те, что крутят диск). И место вроде много не занимают, но на глаза попадаются часто. Наконец принял решение, что надо уже как-то с ними определиться.

Итак, это бесколекторный двигатель постоянного тока, положение ротора в нём отслеживается тремя датчиками Холла, управляется при помощи микросхемы драйвера ВА6849FP (регулировка оборотов). В теории всё просто, а вот на практике впечатления могут зашкалить уже от одного обозрения платки на которой движок собственно и установлен.

Поэтому не стал вникать в назначение многочисленных выводов шлейфа, а просто взял и располовинил двигатель, и увидел его статор. Однако полный обзор печатной платы был по прежнему недосягаем. Осознав, что без жертв не обойтись, отпаял провода (3 штуки) идущие с обмоток статора на плату, а затем сложил – переломил вдвое плату вместе с металлической пластиной крепления.

Освобождённый статор плюхнулся на стол и опять же в позновательных целях был незамедлительно размотан. Теперь могу сообщить, что мотор имел три обмотки (фазы) соединённых методом «звезда», но вполне возможен вариант когда они могут быть соединены методом «дельта».

Схема сборки

Электродвигателя конечно не стало, но вместе с ним не стало и робости перед неизведанным, ибо и неизведанного теперь не было. На фото проводники образуют обмотки и заканчиваются выводами. Соединения обмоток отличаются, но электрическая сущность больших изменений не претерпевает. Относительно толстые провода обмоток статора навели на мысль, что с этого движка можно получить неплохой ток, будь он использован в качестве генератора, да ещё если и несколько вольт напряжения выдаст, то возможно «счастье»!

Остановился вот на такой схеме снятия с электродвигателя, впрочем, теперь уже генератора, вырабатываемого им электрического тока. Данная схема была собрана и опробована со следующими номиналами электронных компонентов: С1 – 100 мкФ х 16 В, все шесть диодов 1N5817.

Было бы интересно опробовать и такую схему, но пока «руки не дошли». Как более совершенный вариант — поставить на выход стабилизатор.

Для дальнейших действий был взят ещё один электродвигатель и приведён в должное состояние для подключения и крепления. Шестерёнки (зубчатая пара) с передаточным отношением 1:5 от китайского фонарика – «жучка».

Всё было смонтировано на подходящее основание. Важным в этой операции является правильно «взять» межцентровое расстояние зубчатых колёс и установить их оси вращения в единой пространственной плоскости.

Схема собрана, вновь обращённый генератор к тесту готов.

При интенсивном, но без мазохизма, вращении большого зубчатого колеса пальцами рук напряжение легко достигает отметки в 1,7 вольта (без нагрузки).

При подключении нагрузки, лампочки на 2,5 В и 150 мА, сила тока достигает 120 мА. Лампочка вспыхивает в пол накала.

Видео — работа под нагрузкой

Возьму на себя смелость заявить, что даже данный конкретный двигатель возможно использовать в качестве ветрогенератора способного вырабатывать электрический ток в достаточном количестве для зарядки одного аккумулятора ААА напряжением 1,2 В и ёмкостью до 1000 мА включительно. Прошу обратить внимание на то фото, которое показывает монтаж шестерён на основании. На правую сторону большого зубчатого колеса так и «проситься» установка ещё одного моторчика. Кинематическая схема будет такой: одно ведущее колесо вращает два ведомых. Возможности удваиваются, реальным становиться собрать повышающий преобразователь и заряжать даже аккумуляторы мобильных телефонов. Вопросами добычи электричества занимался Babay.

Форум по обсуждению материала ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

Изучим разные типы датчиков приближения и объекты, которые они могут обнаруживать.

Как управлять подъемным электромагнитом — теория и практика создания схемы подходящего контроллера для этих целей.

Используйте технологию дополненной реальности, чтобы легко ремонтировать и отлаживать радиоэлектронные проекты в онлайн режиме.

Источник: nevinka-info.ru

Путешествуй самостоятельно