Трехфазного генератора независимого возбуждения
- Генераторы переменного тока
- Синхронный генератор. Принцип действия
- Способы возбуждения синхронных генераторов
- Асинхронный генератор. Отличия от синхронного
- Генераторы независимого возбуждения
- Генератор независимого возбуждения и его характеристики
- Трехфазного генератора независимого возбуждения
- Принцип работы и устройство синхронного генератора переменного тока
- Устройство
- Принцип работы
- Регулирование частоты
- Регулирование ЭДС
- Применение
- Что такое система возбуждения в генераторе переменного тока?
- Понятие возбуждения и его особенности
- Описание процесса
- Простой электромагнит и концентрация поля
- Питание ротора постоянным током: особенности процесса
- Возбуждение генератора: знакомство с определением
- Обмотка возбуждения генератора: знакомство с определением
- Для чего служит обмотка возбуждения генератора
- Катушка возбуждения генератора: знакомство с определением
Генераторы переменного тока
Генератор — устройство, преобразующее один вид энергии в другой.
В данном случае рассматриваем преобразование механической энергии вращения в электрическую.
Различают два типа таких генераторов. Синхронные и асинхронные.
Синхронный генератор. Принцип действия
Отличительным признаком синхронного генератора является жёсткая связь между частотой f переменной ЭДС, наведённой в обмотке статора, и частотой вращения ротора n , называемой синхронной частотой вращения:
n = f / p
где p – число пар полюсов обмотки статора и ротора.
Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:
n = 60·f / p
На рис. 1.1 представлена функциональная схема синхронного генератора. На статоре 1 расположена трёхфазная обмотка, принципиально не отличающаяся от аналогичной обмотки асинхронной машины. На роторе расположен электромагнит с обмоткой возбуждения 2, получающей питание постоянным током, как правило, через скользящие контакты, осуществляемые посредством двух контактных колец, расположенных на роторе, и двух неподвижных щёток.
В некоторых случаях в конструкции ротора синхронного генератора вместо электромагнитов могут использоваться постоянные магниты, тогда необходимость в наличии контактов на валу отпадает, но существенно ограничиваются возможности стабилизации выходных напряжений.
Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС EA , EB и EC , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.
C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи IA, IB, IC , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно. Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе
e = 2Blwv = 2πBlwDn
Здесь: B – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл;
l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м;
w – количество витков;
v = πDn – линейная скорость движения полюсов ротора относительно статора, м/с;
D – внутренний диаметр сердечника статора, м.
Формула ЭДС показывает, что при неизменной частоте вращения ротора n форма графика переменной ЭДС обмотки якоря (ста- тора) определяется исключительно законом распределения магнитной индукции B в зазоре между статором и полюсами ротора. Если график магнитной индукции в зазоре представляет собой синусоиду B = Bmax sinα , то ЭДС генератора также будет синусоидальной. В синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.
Так, если воздушный зазор δ постоянен (рис. 1.2), то магнитная индукция B в воздушном зазоре распределяется по трапецеидальному закону (график 1). Если же края полюсов ротора «скосить» так, чтобы зазор на краях полюсных наконечников был равен δmax (как это показано на рис. 1.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (график 2), а, следовательно, и график ЭДС, индуцированной в обмотке генератора, приблизится к синусоиде. Частота ЭДС синхронного генератора f (Гц) пропорциональна синхронной частоте вращения ротора n (об/с)
где p – число пар полюсов.
В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е. p = 1.
Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой n = 50 об/с (n = 3000 об/мин).
Способы возбуждения синхронных генераторов
Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.
В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.
В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.
На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.
Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.
Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.
Асинхронный генератор. Отличия от синхронного
Асинхронные генераторы принципиально отличаются от синхронных отсутствием жесткой зависимости между частотой вращения ротора и вырабатываемой ЭДС. Разницу между этими частотами характеризует коэффициент s — скольжение.
здесь:
n — частота вращения магнитного поля (частота ЭДС).
n r — частота вращения ротора.
Более подробно с расчётом скольжения и частоты можно ознакомиться в статье: асинхронные генераторы. Частота.
В обычном режиме электромагнитное поле асинхронного генератора под нагрузкой оказывает тормозной момент на вращения ротора, следовательно, частота изменения магнитного поля меньше, поэтому скольжение будет отрицательным. К генераторам, работающим в области положительных скольжений, можно отнести асинхронные тахогенераторы и преобразователи частоты.
Асинхронные генераторы в зависимости от конкретных условий применения выполняются с короткозамкнутым, фазным или полым ротором. Источниками формирования необходимой энергии возбуждения ротора могут являться статические конденсаторы или вентильные преобразователи с искусственной коммутацией вентилей.
Асинхронные генераторы можно классифицировать по способу возбуждения, характеру выходной частоты (изменяющаяся, постоянная), способу стабилизации напряжения, рабочим областям скольжения, конструктивному выполнению и числу фаз.
Последние два признака характеризуют конструктивные особенности генераторов.
Характер выходной частоты и методы стабилизации напряжения в значительной степени обусловлены способом образования магнитного потока.
Классификация по способу возбуждения является основной.
Можно рассмотреть генераторы с самовозбуждением и с независимым возбуждением.
Самовозбуждение в асинхронных генераторах может быть организовано:
а) с помощью конденсаторов, включенных в цепь статора или ротора или одновременно в первичную и вторичную цепи;
б) посредством вентильных преобразователей с естественной и искусственной коммутацией вентилей.
Независимое возбуждение может осуществляться от внешнего источника переменного напряжения.
По характеру частоты самовозбуждающиеся генераторы разделяются на две группы. К первой из них относятся источники практически постоянной (или постоянной) частоты, ко второй переменной (регулируемой) частоты. Последние применяются для питания асинхронных двигателей с плавным изменением частоты вращения.
Более подробно рассмотреть принцип работы и конструктивные особенности асинхронных генераторов планируется рассмотреть в отдельных публикациях.
Асинхронные генераторы не требуют в конструкции сложных узлов для организации возбуждения постоянным током или применения дорогостоящих материалов с большим запасом магнитной энергии, поэтому находят широкое применение у пользователей передвижных электроустановок по причине своей простоты и неприхотливости в обслуживании. Используются для питания устройств, не требующих жёсткой привязки к частоте тока.
Техническим достоинством асинхронных генераторов можно признать их устойчивость к перегрузкам и коротким замыканиям.
С некоторой информацией по мобильным генераторным установкам можно ознакомиться на странице:
Дизель-генераторы.
Асинхронный генератор. Характеристики.
Асинхронный генератор. Стабилизация.
Замечания и предложения принимаются и приветствуются!
Генераторы независимого возбуждения
Генераторами независимого возбуждения называются генераторы постоянного тока, обмотка возбуждения которых питается постоянным током от постороннего источника электрической энергии (сеть постоянного тока, выпрямитель, аккумулятор и др.) или у которых магнитный поток создается постоянными магнитами.
Схема генератора независимого возбуждения изображена на рис. 1.16. Якорь генератора приводится во вращение от приводного двигателя
Цепь якоря электрически не соединена с цепью возбуждения, поэтому ток нагрузки и ток якоря – это один и тот же ток ( ). Цепь возбуждения питается от постороннего источника постоянного тока. В нее включают регулировочный реостат предназначенный для регулирования тока возбуждения , магнитного потока возбуждения и в конечном счете ЭДС и напряжения генератора.
(рис. 1.17). Характеристика снимается при плавном увеличении тока возбуждения, а затем при его плавном уменьшении при n = nном = const . Вторая ветвь характеристики идет несколько выше первой и при токе Iв = 0 в машине есть некоторая ЭДС называемая остаточной. Вид характеристики холостого хода объясняется тем, что при n = const пропорциональна магнитному потоку а последний – индукции т.е. ее форма такая же, как у кривой гистерезиса. За расчетную обычно принимают характеристику, проходящую между ветвями экспериментальной кривой (штриховая кривая на рис. 1.17). Остаточная ЭДС создается за счет индукции, остающейся в магнитной цепи статора после отключения тока возбуждения. Машина рассчитывается таким образом, чтобы в номинальном режиме рабочая точка (в.ном, ном находилась на «колене» характеристики холостого хода, этим обеспечивается получение достаточно высокой ЭДС при относительно небольшом токе возбуждения.
Внешняя характеристика генератора при = const и n = nном = const (рис. 1.18) характеризует влияние тока нагрузки генератора на напряжение на его выводах. Напряжение при увеличении нагрузки от нуля до номинальной плавно уменьшается на 5 – 15% по двум причинам: из-за падения напряжения на сопротивлении якоря и уменьшения ЭДС из-за размагничивающего влияния реакции якоря (кривые и а). При перегрузке машины ток в якоре становится недопустимо большим и напряжение сильно падает (кривая 1а).
При коротком замыкании ток в якоре примерно в 10 раз больше номинального (он ограничивается только сопротивлением цепи якоря ) и если быстро не отключить генератор, то его коллектор и обмотка выйдут из строя.
Регулировочная характеристика при = const и n = nном = const изображена на рис. 1.19 (кривая 1). Для поддержания постоянства напряжения на выводах якоря в цепь возбуждения включен регулировочный реостат с сопротивлением (рис. 1.16).
Генератор независимого возбуждения и его характеристики
У генератора независимого возбуждения обмотка возбуждения В получает питание от постороннего источника тока — аккумулятора А (рис. 27). Ток возбуждения Iв, проходя по обмотке возбуждения, создает в полюсах магнитный поток Ф, пронизывающий обмотку якоря. При вращении якоря первичным двигателем в обмотке якоря индуктируется э. д. с. Ея, величина которой, зависит от магнитного потока и скорости вращения якоря.
Если к зажимам генератора подключить нагрузку, то в цепях якоря и нагрузки потечет ток нагрузки Iнг.
Графическое выражение зависимостей между различными величинами электрических машин называют характеристиками.Они могут быть получены опытным или расчетным путем.
Характеристика холостого ходаотображает зависимость напряжения на зажимах генератора от тока возбуждения при постоянной скорости вращения и токе нагрузки, равном нулю.
Математически эту характеристику можно записать так:
Рис. 1. Принципиальная схема
Генератора независимого возбуждения
U = f(Iв) при Iнг. = и n= const.
Схема для снятия некоторых характеристик генератора независимого возбуждения, приведена на рисунке 28.
Для изменения величины э. д. с. генератора в цепь обмотки возбуждения введен регулировочный реостат Rр.Рубильник цепи нагрузки Р отключен. Силу тока возбуждения измеряет амперметр А, а напряжение на зажимах генератора -вольтметр V. Амперметр А1включенный в цепь нагрузки, в данном опыте не нужен, так как ток нагрузки равен нулю, но он необходим для снятия других характеристик.
Рис. 2. Схема снятия характеристик холостого хода, внешней и регулировочной генератора независимого возбуждения
В обмотке возбуждения, к которой подключен аккумулятор, возникает ток Iв, а вольтметр показывает некоторое значение э. д. с. При увеличении тока возбуждения э. д. с. на зажимах генератора повышается: сначала в прямой зависимости, а затем по мере насыщения магнитной системы машины это увеличение будет все меньшим (рис. 29).
Увеличим ток возбуждения до значения, при котором э. д. с. генератора возрастет примерно до значения 1,25 Uн, а затем, уменьшая ток возбуждения до нуля, запишем показанияамперметра А и вольтметра V. С уменьшением тока возбуждения напряжение на зажимах генератора снижается, однако, когда ток возбуждения упадет до нуля, э. д. с. генератора не будет равна нулю, так как в полюсах есть поток остаточного магнетизма.
Величина э. д. с. от остаточного магнетизма составляет 1—3% номинального напряжения машины.
Рис.3. Характеристика холостогохода генератора независимого возбуждения
Точка N, соответствующая номинальному значению напряжения генератора, лежит на перегибе кривой характеристики холостого хода. Начальная часть кривой ONсоответствует области неустойчивых напряжений (незначительное изменение тока возбуждения приводит к значительному изменению напряжения), на пологой части кривой, в зоне насыщения, ограничиваются возможности регулирования напряжения (для небольшого изменения напряжения требуется значительное изменение тока возбуждения).
Характеристика холостого хода дает представление о степени насыщения стали машины. По этой характеристике можно также определить, на какое поминальное напряжение изготовлена машина. Для этого измеряют длину отрезка MNи получают в масштабе значение э. д. с, которое приближенно равно номинальному напряжению машины.
Внешняя характеристика выражает зависимость напряжения на зажимах генератора от тока нагрузки при постоянных значениях скорости вращения и сопротивления цепи возбуждения, т. е.
U =f(Iнг)прип= const иrв=const.
В генераторе с независимым возбуждением ток возбуждения будет неизменным: Iв= const.
Внешнюю характеристику снимают при понижении и повышении напряжения.
В первом случаев режиме холостого хода устанавливают на зажимах генератора номинальное напряжениеи, не трогая регулировочный реостат Rр(см. рис. 28), нагружают генератор до номинального значения тока, записывая при этом показания амперметра А1 и вольтметра V. Амперметр А цепи возбуждения в данном опыте не нужен. Поскольку с увеличением нагрузки возрастает ток якоря Iя,,что сопровождается повышением падения напряжения 1яRя цепи якоря, и вследствие размагничивающего действия реакции якоря (при сдвиге щеток с геометрической нейтрали), напряжение машины уменьшается (рис. 30, а).
Если пренебречь размагничивающим действием реакции якоря, то уравнение напряжения генератора можно записать в таком виде:
Изменение напряжения ΔU определяют в процентах от номинального
,
где ΔU% составляет (5-10%) Uн.Еслибы продолжать нагружать генератор далее и затемзамкнутьего зажимы накоротко, чего делать нельзя, то можно было бы получить продолжение внешней характеристики. Точке пересечения кривой с осью абсцисс соответствовало бы значение тока короткого замыкания Iк, которое может быть в несколькодесятковразбольшеноминального. Обмотку якоря защищают от токов короткогозамыкания, устанавливая в цепи нагрузки плавкие предохранители или
автоматы.
Рис. 4 Внешние характеристики генератора н.в. при понижении и повышении напряжения.
Во втором случаеустанавливают поминальное напряжение на зажимах генератора при поминальном токе нагрузки и затем, не изменяя скорости вращения и сопротивления регулировочного реостата, уменьшают ток нагрузки до нуля, записывая показания приборов. Вследствие того, что с уменьшением тока нагрузки падение напряжения в цепи якоря уменьшается, соответственно возрастает и напряжение на зажимах генератора до значения Uo(рис. 30, б). Тогда
.
Регулировочная характеристика отражает зависимость тока возбуждения от тока нагрузки при постоянных значениях скорости вращения и напряжения на зажимах генератора, т.е.
IВ =f(Iнг)прип = const иU = const.
Регулировочная характеристика показывает, как нужно изменять ток возбуждения, чтобы при изменении нагрузки поддерживать напряжение постоянным.
Регулировочную характеристику снимают по схеме, показанной на рисунке 28, причем используют все включенные приборы.
Так как U= Е -IяRя, а с увеличением тока якоря 1Явозрастает падение напряжения IяRя, то для того, чтобы напряжение Uоставалось неизменным, нужно одновременно с увеличением тока якоря повышать э. д. с, увеличивая ток возбуждения 1я(рис. 31).
Рис. 5. Регулировочная характеристикагенератора н.в.
Характеристикой короткого замыкания выражают зависимость тока короткого замыкания от тока возбуждения при постоянном значении скорости вращения и напряжении, равном нулю, т. е.
1к = f(Iв) при п = const и U = 0.
При снятии характеристики короткого замыкания величина тока короткого замыкания не должна превышать номинального значения. Для этого в цепь возбуждения, кроме регулировочного реостата, включают дополнительное сопротивлениеRдоб, чтобы значительно уменьшить ток возбуждения Iв (рис. 32, а). Обмотку якоря замыкают накоротко через амперметр А.
Поскольку ток возбуждения 1Ви соответственно магнитный поток Ф при снятии характеристики очень малы, то сталь машины не насыщена, в результате чего характеристика короткого замыкания представляет собой прямую линию (рис. 32, б).
Рис. 6. Опыт короткого замыкания генератора н.в. а) схема; б) характеристика
При помощи характеристики короткого замыкания можноприближенно определить значение тока короткого замыкания, который протекает в генераторе в тот момент, когда замыкание происходит при номинальном режиме работы. Для этого откладывают (точка N) значение тока возбуждения 1Вн, соответствующее номинальному режиму работы генератора, затем продолжают линию характеристики до пересечения ее с перпендикуляром, восстановленным в точке N. Отрезок NMпредставляет собой в масштабе приближенновеличину тока короткого замыкания в номинальном режиме работы генератора.
Трехфазного генератора независимого возбуждения
Генератором. с независимом возбуждением называется. такой, обмотка возбуждения которого присоединяется к постороннему источнику питания. На рис. 4-20 показана схема генератора независимого возбуждения.
К рубильнику 1 подключена обмотка возбуждения последовательно с регулировочным реостатом 2 и амперметром, измеряющим ток 7В. Реостат имеет холостой контакт 3, присоединяемый к зажиму обмотки возбуждения, подключенному непосредственно ко второму зажиму рубильника. Если для уменьшения тока возбуждения передвигать движок вверх (рис. 4-20), то он попадет на холостой контакт и замкнет обмотку возбуждения накоротко. Разрыва цепи возбуждения при этом не происходит. Если же схема собрана так, что обмотка возбуждения размыкается, то в месте разрыва образуется электрическая дуга и энергия магнитного поля превращается в электрическую.
Индуктивность обмотки обычно велика и, следовательно, велика э. д. с. самоиндукции, поддерживающая на концах разомкнутой обмотки значительное напряжение, что может быть причиной пробоя изоляции обмотки и большой опасности для обслуживающего персонала. Электрическая дуга, температура которой достигает 4 000° С, вызывает оплавление и повышенное окисление поверхности контактов.
Рис. 4-20. Схема генератора независимого возбуждения.
К зажимам якоря присоединен потребитель энергии , а для измерения напряжения U и тока — вольтметр и амперметр. Первичный двигатель, вращающий якорь, не показан.
Характеристика холостого хода при представляет собой в другом масштабе график так как Е пропорциональна Ф. Она служит для проверки расчетных данных магнитной цепи, графических построений и называется магнитной характеристикой машины.
Получают ее следующим образом. Якорь генератора вращают с постоянной скоростью при разомкнутых рубильниках 1 и 5. Затем, включив рубильник 1, уменьшая сопротивление увеличивают напряжение генератора до величины Записав значения уменьшают ток возбуждения, делая 5—6 измерений Последнее измерение производится при токе Полученная при этом э. д. с., наведенная потоком остаточной индукции, называется остаточной и равна Точка, соответствующая номинальному напряжению лежит обычно на колене кривой — при токе называемом током возбуждения при холостом ходе и номинальном напряжении (рис. 4-21).
Внешняя характеристика генератора при и характеризует устойчивость напряжения генератора при изменении нагрузки и показана на рис. 4-22 (кривая ).
Для получения характеристики якорь вращают с постоянной скоростью и возбуждают машину при холостом ходе до
Замкнув рубильник 5 (рис. 4-20), уменьшают постепенно сопротивление нагрузки , регулируют одновременно ток возбуждения так, чтобы при установилось номинальное напряжение . Это будет первая точка характеристики при (рис. 4-22). Затем, поддерживая неизменным , увеличивают постепенно сопротивление , и измеряют 5—6 раз значения разгружая генератор до холостого хода.
При разгрузке уменьшается ток уменьшаются падение напряжения в цепи якоря и размагничивающее действие реакции якоря (см. § 4-8).
Рис. 4-21. Характеристика холостого хода генератора.
Рис. 4-22. Внешние характеристики генератора.
Поток Ф машины возрастает, а с ним и э. д. с. Е. Так как то напряжение машины U растет.
называется процентным изменением напряжен и я и составляет для генераторов с независимым возбуждением 5—10%. Для поддержания напряжения неизменным при колебаниях нагрузки приходится регулировать ток возбуждения. Это может быть сделано вручную или при помощи автоматических регуляторов.
Принцип работы и устройство синхронного генератора переменного тока
Электричество – единственный вид энергии, которую легко можно передать на большие расстояния, а затем преобразовать её в механическую, тепловую или превратить в световое излучение. Саму же электроэнергию также можно получить разными способами: химическим, тепловым, механическим, фотоэлектрическим и др. Но именно механический способ, который основан на применении генераторов, оказался самым эффективным. Среди этих источников электроэнергии широкое применение нашёл синхронный генератор переменного тока.
Практически вся электроэнергия, используемая в быту и на производстве, вырабатывается генераторами этого типа. Они заслуживают того, чтобы более подробно рассмотреть их устройство и разобраться в принципе работы этих удивительных синхронных машин.
Устройство
В конструкции синхронных генераторов используются две основные рабочие детали – вращающийся ротор и неподвижный статор. На валу ротора располагаются постоянные магниты либо обмотки возбуждения. Магниты имеют зубчатую форму, с противоположно направленными полюсами.
Бесщёточные генераторы.
Обмотки статора размещают таким образом, чтобы их сердечники совпадали с выступами магнитных полюсов ротора, или с сердечниками катушек ротора. Количество зубцов магнита, обычно, не превышает 6. При такой конструкции вырабатываемый ток снимается непосредственно с обмоток статоров. Другими словами, статор выступает в роли якоря.
В принципе, постоянные магниты можно расположить на статоре, а рабочие обмотки, в которых будет индуцироваться ЭДС, — на роторе. Работоспособность генератора от этого не изменится, однако потребуются кольца и щётки для снятия напряжения с обмоток якоря, а это, чаще всего, не рационально.
Схематическое изображение бесщеточного генератора без обмоток возбуждения изображено на рис. 1.
Рис. 1. Модель генератора с магнитным ротором
Пояснение:
- схема устройства;
- схема расположения магнитных полюсов на якоре. Здесь буквами NS обозначено коаксиальный магнит с полюсами, а литерой R – стальной магнитопровод ротора в виде когтеобразных наконечников.
- модель генератора в разрезе. Выводы фазных обмоток статора соединены «звездой».
Синхронные машины с индукторами.
Заметим, что постоянные магниты в качестве ротора используются в альтернаторах небольшой мощности. В мощных электрических машинах всегда применяются обмотки индуктора с независимым возбуждением. Независимым источником питания является маломощный генератор постоянного тока, смонтированный на валу синхронного двигателя.
Существуют конструкции синхронных генераторов малой и средней мощности, с самовозбуждающимися обмотками. Для возбуждения индуктора выпрямленный ток фазных обмоток подаётся через щётки на кольца, расположенные на валу статора. Строение такого альтернатора показано на рис. 2.
Рис. 2. Строение синхронного генератора средней мощности
Обратите внимание на наличие щёток, на которые подаётся питания от независимого источника.
По количеству фаз синхронные генераторы делятся на:
- однофазные;
- двухфазные;
- трёхфазные.
По конструкции ротора можно выделить генераторы с явновыраженными полюсами и с неявновыраженными. В неявнополюсном роторе отсутствуют выступы, а катушки провода якоря спрятаны в пазы статора.
По способу соединения фазных обмоток различают трёхфазные генераторы:
- соединённые по шестипроводной системе Тесла (не нашли практического применения);
- «звезда»;
- «треугольник»;
- сочетание шести обмоток, соединённых в виде одной «звезды» и «треугольника». Это соединение ещё называют «Славянка».
Самое распространённое соединение – «звезда» с нейтральным проводом.
Принцип работы
Рассмотрим принцип генерации тока на примере контурной рамки, помещённой между магнитными полюсами. (Рис. 3)
Рис. 3. Схема, объясняющая принцип работы генератора
Если заставить рамку вращаться (по направлению стрелок), то она будет пересекать магнитные силовые линии. При этом, по закону электромагнитной индукции, в рамке индуцируется электрический ток, который проявляется при подключении нагрузки к щёткам. Его направление можно определить по правилу буравчика. На схеме направление тока показано чёрными стрелками.
Обратите внимание на то, что на участках рамки ab и cd ток движется в противоположных направлениях. Эти направления меняются при переходе участков рамки от одного полюса к другому полюсу магнита. Если каждый вывод рамки подключить к отдельному кольцу (на рисунке они подключены к коллектору!), то на выходе мы получим переменный ток.
Величина тока пропорциональна скорости вращения ротора. Кроме того, переменный ток характеризуется ещё одним параметром – частотой. Эта величина напрямую зависит от частоты вращения вала.
Частота тока в электросетях строго соблюдается. В России и в ряде других стран она составляет 50 Гц, то есть 50 колебаний в секунду.
Этот параметр довольно легко вычислить из таких соображений: за один оборот рамки (или двухполюсного магнита) происходит одно изменение направления тока. Если вал синхронного генератора делает 1 оборот в секунду, то частота переменного тока составит 1 Гц. Для получения частоты 50 Гц необходимо обеспечить 50 оборотов статора в секунду или 3000 об./мин.
При возрастании числа полюсов заданная частота удерживается путём снижения скорости вращения статора. (обратно пропорциональная зависимость). Так, для четерёхполюсного статора (число полюсов в два раза больше) для поддержания частоты 50 Гц скорость вращения вала необходимо снизить в два раза. Соответственно если используется 6 полюсов, то частота вращения вала должна уменьшиться в три раза – до 1000 об./мин.
Заметим, что в некоторых странах, таких как США, Япония и др. существуют другие стандарты – 60 Гц, а переменный 400 Гц используется, например, в бортовой сети современных самолётов.
Регулирование частоты
Достигнуть требуемых параметров частоты можно 2 путями:
- Сконструировать генератор с определённым количеством полюсов электромагнитов.
- Обеспечить соответствующую расчётную частоту вращения вала.
Например, в тихоходных гидротурбинах, вращающихся со скоростью 150 об./мин. для регулирования частоты число полюсов синхронных генераторов увеличивают до 40. На дизельных электростанциях, при скоростях вращения 750 об./мин., оптимальное число полюсов – 8.
Регулирование ЭДС
В связи с изменениями параметров активных нагрузок возникает необходимость в выравнивании номинальных напряжений. Несмотря на то, что ЭДС индукции синхронного генератора связана со скоростью вращения ротора, однако, из-за требований по соблюдению стабильной частоты, этим способом нельзя изменять указанный параметр. Но параметры магнитной индукции можно изменить путём снижения или увеличения магнитного потока, который зависит от количества витков обмотки индуктора и величины тока возбуждения.
Регулирование осуществляется путём включения в цепь катушек возбуждения дополнительных реостатов, электронных схем или регулировкой тока генератора-возбудителя (Рис. 4). В случае использования альтернаторов с постоянными магнитами, в таких устройствах напряжение регулируется внешними стабилизаторами.
Рис. 4. Схема регулировки напряжения
Благодаря малому весу и отличным токовым характеристикам синхронные генераторы переменного тока нашли применение во всех современных автомобилях. Поскольку бортовая сеть авто использует постоянный ток, конструкции автомобильных генераторов оборудованы трехфазным выпрямителем. Для выпрямляемых переменных токов частота не имеет значения, а вот напряжение должно быть стабильно. Этого добиваются с помощью внешних электронных устройств. На рисунке 5 представлена электрическая схема подключения генератора к бортовой сети современного автомобиля.
Рис. 5. Схема подключения генератора к бортовой сети авто
Применение
У синхронных генераторов переменного тока есть одна важная особенность: они поддаются синхронизации с другими подобными электрическими машинами. При этом синхронные скорости и ЭДС параллельно включенных альтернаторов совпадают, а фазовый сдвиг равен нулю. Данное обстоятельство позволяет применять устройства в промышленной энергетике и подключать резервные генераторы при превышении номинальных мощностей в часы пиковых нагрузок.
Трёхфазные тяговые генераторы применяют на тепловозах. Переменные токи для питания двигателей выпрямляются полупроводниковыми устройствами. Сегодня в России уже выпускаются тепловозы на базе асинхронных электродвигателей, не требующих выпрямления тока. В режиме торможения они работают в качестве асинхронных генераторов.
Синхронные генераторы устанавливают на гибридных автомобилях с целью совмещения тяги ДВС и мощности тяговых электродвигателей. Развивая активную мощность при номинальных нагрузках, они позволяют экономить дорогое топливо.
Существует много других сфер применения. Например, мобильные мини-электростанции, бытовые генераторы тока, как однофазный двигатель и т. п.
Что такое система возбуждения в генераторе переменного тока?
Понятие возбуждения и его особенности
Возбуждение – это термин, используемый инженерами-электриками, означающий создание магнитного поля. Простой магнит, используемый в этой главе для иллюстрации работы генератора, конечно способен создать ток в обмотках генератора, но постоянный магнит перестает быть постоянным под действием вибраций и нагрева.
Описание процесса
Обычно ротор выполняется в виде электромагнита, изготовленного из мягкой стали или железа, на который намотана катушка. Через катушку пропускается постоянный ток, индуцирующий в железном роторе магнитное поле. Напряженность наведенного таким обрезом магнитного поля зависит от силы тока, пропускаемого через обмотку возбуждения, и этот факт дает еще одно преимущество, поскольку позволяет регулировать э.д.с, в статорных обмотках генератора.
Простой электромагнит и концентрация поля
Если катушку ротора намотать не железный сердечник так, как показано на рис. 3.13(а), то получится магнит с одной парой полюсов N (North – северный) и S (South – южный).
Рис. 3.13(а). Простой электромагнит.
Из-за большого расстояния между полюсами магнитные силовые линии окажутся сильно рассеянными в пространстве. Теперь протянем полюса магнита навстречу друг другу, так, чтобы между ними остался лишь небольшой зазор (см. рис. 3.13(б)).
Рис. 3.13(6). Загнем концы электромагнита, чтобы сконцентрировать поле.
И, наконец, выполним полюса магнита в виде набора зубьев, входящих друг в друга, но без соприкосновения (см. рис. 3.14). Мы получим в сумме длинный узкий зазор между полюсами N и S, через который будет происходить “утечка” магнитного поля наружу. При вращении ротора эта “утечка” будет пересекать обмотки статора, и наводить в них э.д.с.
Питание ротора постоянным током: особенности процесса
Для того чтобы магнитное поле в роторе не меняло направления, его катушка должна питаться постоянным током одной полярности. Подвод тока к вращающейся катушке осуществляется через угольные щетки и коллекторные кольца.
самовозбуждение и возбуждение от внешнего источника (обычно от аккумулятора).
Рис. 3.14. Зубчатый ротор генератора.
Возбуждение генератора: знакомство с определением
Возбуждение генератора – это процесс, который происходит на основе магнитодвижущей силы. Она выполняет процесс наведения магнитного поля, которое, в свою очередь, производит процесс образования электроэнергии. Для возбуждения генераторов первого поколения использовали специальные ротаторы постоянного тока, которые еще принято называть возбудителями. Их обмотка получала питание постоянного тока от другого генератора, его принято называть подвозбудителем. Все компоненты размещаются на одном валу, а их вращение происходит синхронно.
Обмотка возбуждения генератора: знакомство с определением
Обмотка возбуждения генератора – это один из основных конструктивных элементов синхронного генератора. Она получает питание от источника, предоставляющего постоянный ток. Чаще всего функцию источника выполняет электронный генератор напряжения. Такие регуляторы используется в новых моделях, работающих на основе самовозбудителя. А самовозбуждение, в свою очередь, основано на том, что первоначальное возбуждение происходит с помощью остаточного магнетизма магнитопровода синхронного генератора (СГ). Важно понимать, что энергия переменного тока поступает именно от обмотки статора СГ, трансформируя ее в энергию постоянного тока.
Для чего служит обмотка возбуждения генератора
Обмотка ротора возбуждается источником постоянного тока. Ротор вращается с помощью первичного двигателя, тем самым магнитное поле, создаваемое в роторе, тоже вращается вместе с ним с той же скоростью. Теперь линии магнитного поля пересекают обмотку статора, расположенную вокруг ротора. В результате в обмотке образуемся переменная электродвижущая сила (эдс).
Катушка возбуждения генератора: знакомство с определением
Катушка возбуждения генератора – это специальный электромагнит, который используют для генерации электромагнитного поля в электромагнитных машинах. В его состав входит катушка и проволока, по которой протекает ток. Если взять к примеру вращающиеся машины, то там катушки возбуждения наматываются на специальный железный магнитный сердечник. Именно последний выполняет функцию направления силовой линии магнитного поля. В состав магнитопровода входит два основные компонента:
- Статор – он неподвижный.
- Ротор – производит вращения вокруг статора.
Силовые линий магнитного поля непрерывно проходят от от статора к ротору и обратно. Катушки возбуждения могут располагаться либо на статоре, либо на роторе.
Источник: