Формы электрических импульсов в генераторах
- Классификация генераторов импульсов (импульсных генераторов)
- Генератор импульсов: классификация
- Понятие импульса
- Параметры прямоугольного импульса идеальной и реальной форм
- Классификация импульсов
- Серия прямоугольных импульсов
- Генераторы импульсов
- Генераторы сигналов
- Историческая справка
- Как устроен генератор сигналов?
- Принцип действия
- Как устроен генератор смешанных сигналов?
- Виды генераторов сигналов
- Синусоидальный
- Генератор низкочастотный
- Генератор звуковой частоты
- Импульсы произвольной формы
- Контроллеры сложных сигналов
- Генератор цифрового сигнала
- Области применения
- Электронные генераторы
- Конструкции генераторов. Примеры схем
- Релаксационный генератор
- Генератор импульсов
Классификация генераторов импульсов (импульсных генераторов)
Генератор импульсов (ГИ), или импульсный генератор, – это прибор (устройство), преобразующие энергию постоянного или переменного источника напряжения в энергию электрических импульсов, которые обычно имеют прямоугольную форму.
ГИ используются в большом количестве схем и устройств, а также применяются для наладки и ремонта разнообразных цифровых устройств в области измерительной техники.
Генератор импульсов: классификация
По выходной последовательности основных импульсов различают приборы, генерирующие:
- одиночные импульсы;
- парные импульсы;
- кодовые пакеты;
- кодовые комбинации;
- псевдослучайные последовательности импульсов программного и ручного управления параметрами.
По числу каналов выделяются генераторы:
- одноканальные;
- многоканальные.
Понятие импульса
Импульс электрической величины – кратковременное (от секунд до наносекунд) воздействие данных величин на нагрузку.
Импульсными устройствами называются устройства, которые используют и формируют импульсные сигналы.
Параметры прямоугольного импульса идеальной и реальной форм
Для прямоугольного импульса идеальной формы различают два параметра:
- амплитуда – U;
- длительность – t.
В реальности же форма такого импульса отличается от идеальной:
Параметры реального импульса представлены:
- Постоянной составляющей напряжения в импульсе
- Амплитудой – максимальным значением напряжения, силы тока или мощности в импульсе
- Длительностью фронта – промежутком времени, за который напряжение в импульсе возрастает от 0,1 до 0,9 от амплитудного значения
- Длительностью среза – промежутком времени, за который напряжение в импульсе убывает от 0,9 до 0,1 от амплитудного значения
- Длительностью импульса – измеряется на уровне 0,1 от амплитудного значения
- Активной длительностью импульса – измеряется на уровне 0,5 от амплитудного значения
Импульс считается прямоугольным, если равны длительности фронта и среза.
Классификация импульсов
- По форме импульсы бывают:
- По полярности различают импульсы:
Серия прямоугольных импульсов
Графическое отображение последовательности прямоугольных импульсов:
Параметр Ти представляет собой период следования импульсов, то есть промежуток времени, который считается от начала одного условно выбранного импульса и до начала второго импульса.
Генераторы импульсов
Генераторы импульсов используют во многих радиотехнических устройствах (электронных счетчиках, реле времени), применяют при настройке цифровой техники. Диапазон частот таких генераторов может быть от единиц герц до многих мегагерц. Здесь приводятся простые схемы генераторов, в том числе на элементах цифровой «логики», которые широко используются в более сложных схемах как частотозадающие узлы, переключатели, источники образцовых сигналов и звуков.
На рис. 1 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки S1 (то есть он не является автогенератором, схемы которых приводятся далее). На логических элементах DD1.1 и DD1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки S1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 — напряжение низкого уровня; при нажатой кнопке — наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.
На рис. 2 показана схема простейшего генератора импульсов на электромагнитном реле. При подаче питания конденсатор С1 заряжается через резистор R1 и реле срабатывает, отключая источник питания контактами К 1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К 1.1 опять замкнутся, снова начнет заряжаться конденсатор — цикл повторяется.
Частота переключении электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использовании реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно один раз в секунду. Такой генератор можно использовать, например, для коммутации гирлянд на новогодней елке, для получения других световых эффектов. Его недостаток — необходимость использования конденсатора значительной емкости.
На рис. 3 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада. Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15. 17 В и токе 20. 50 мА.
В генераторе импульсов, схема которого приведена на рис. 4, использованы логические элементы микросхемы DD1 и полевой транзистор VT1. При изменении номиналов конденсатора С1 и резисторов R2 и R3 генерируются импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность напряжения высокого уровня на выходе генератора, а резистор R3 — длительность напряжения низкого уровня. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1. 2 мкФ. Сопротивления резисторов R2, R3 — 10. 15 МОм. Транзистор VT1 может быть любым из серий КП302, КП303. Микросхема — К155ЛА3, ее питание составляет 5В стабилизированного напряжения. Можно использовать КМОП микросхемы серий К561, К564, К176, питание которых лежит в пределах 3 … 12 В, цоколевка таких микросхем другая и показана в конце статьи.
При наличии микросхемы КМОП (серия К176, К561) можно собрать широкодиапазонный генератор импульсов без применения полевого транзистора. Схема приведена на рис. 5. Для удобства установки частоты емкость конденсатора времязадающей цепи изменяют переключателем S1. Диапазон частот, формируемых генератором, составляет 1. 10 000 Гц. Микросхема — К561ЛН2.
Если нужна высокая стабильность генерируемой частоты, то такой генератор можно сделать «кварцованным» — включить кварцевый резонатор на нужную частоту. Ниже показан пример кварцованного генератора на частоту 4,3 МГц:
На рис. 6 представлена схема генератора импульсов с регулируемой скважностью.
Скважность – отношение периода следования импульсов (Т) к их длительности (t):
Скважность импульсов высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.
Генератор, схема которого приведена на рисунке ниже, вырабатывает импульсы как прямоугольной, так и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3. На конденсаторе С2 и резисторе R2 собрана дифференцирующая цепь, благодаря которой на выходе логического элемента DD1.5 формируются короткие положительные импульсы (длительностью около 1 мкс). На полевом транзисторе VT2 и переменном резисторе R4 выполнен регулируемый стабилизатор тока. Этот ток заряжает конденсатор С3, и напряжение на нем линейно возрастает. В момент поступления на базу транзистора VT1 короткого положительного импульса транзистор VT1 открывается, разряжая конденсатор СЗ. На его обкладках таким образом формируется пилообразное напряжение. Резистором R4 регулируют ток зарядки конденсатора и, следовательно, крутизну нарастания пилообразного напряжения и его амплитуду. Конденсаторы С1 и СЗ подбирают исходя из требуемой частоты импульсов. Микросхема — К561ЛН2.
Цифровые микросхемы в генераторах взаимозаменяемы в большинстве случаев и можно использовать в одной и той же схеме как микросхемы с элементами «И-НЕ», так и «ИЛИ-НЕ», или же просто инверторы. Вариант таких замен показан на примере рисунка 5, где была использована микросхема с инверторами К561ЛН2. Точно такую схему с сохранением всех параметров можно собрать и на К561ЛА7, и на К561ЛЕ5 (или серий К176, К564, К164), как показано ниже. Нужно только соблюдать цоколевку микросхем, которая во многих случаях даже совпадает.
Если требуется повысить нагрузочную способность какого либо узла (чтобы, например, подключить динамик или другую нагрузку), можно применить на выходе усилитель на транзисторе, как в схеме на рис. 6, или же включить несколько элементов микросхемы параллельно, как показано на рисунке ниже:
Универсальная печатная макетная плата для двух микросхем. На таких платах удобно собирать несложные схемы с небольшим количеством деталей, как, например, приведенные в этой статье. Детали паяются к контактным площадкам и при необходимости соединятся перемычками. Размеры платы 100 х 55 мм.
На рисунке ниже приводится цоколевка некоторых широко применяемых цифровых логических микросхем КМОП — технологии с элементами «И-НЕ», «ИЛИ-НЕ» и инверторов. Микросхемы серий К564, К176 имеют аналогичную цоколевку, цоколевка же микросхем серии К155 отличается от указанной (но такие уже давно не применяются). Питание указанных микросхем, как уже говорилось выше, может быть от 3 до 15 В (кроме серии К176, которая более критична к напряжению питания и нормально работает при 9В).
Генераторы сигналов
Генераторы сигналов – приборы, позволяющие получать электрические, акустические и иного рода импульсы. Устройства бывают разных видов — обычно прибор подбирают под конкретную цель. Решающими факторами при выборе могут оказаться форма прибора, его статические функции и энергетические показатели. Устройство применяют в разных сферах — как в медицине, так и в быту (стиральные машины, микроволновки).
Историческая справка
Первый генератор был создан в 1887 году немецким физиком Германом Герцем. Прибор разрабатывался на основе индукционной катушки (или катушки Румкорфа). Он был искровым и вырабатывал электромагнитные волны. Потом история развивалась так:
- 1913 г. Другой немецкий ученый, Александр Мейснер, создал электронный генератор с ламповым каскадом и общим катодом.
- 1915 г. Появилась ламповая (или индуктивная) схема. Включение контура было автотрансформаторным, что отличало его от ранних изобретений. Идея принадлежала американскому физику Ральфу Хартли.
- 1919 г. На этот раз идея снова принадлежит американцам. Ученый Эдвин Колпитц создал устройство на электронной лампочке, подключаемое к колебательному контуру посредством емкостного разделителя напряжения.
Это было лишь начало. Позже инженерами разных стран было создано множество вариаций электронных генераторов.
Как устроен генератор сигналов?
Устройство генерирует импульсы различной природы для замера параметров электронных приборов. Большинство генераторов работает только при наличии входного импульса, амплитуда которого постоянно меняется.
Стандартная модель сигнального генератора состоит из нескольких частей:
- Экран на передней панели. Нужен для отслеживания колебаний и управления ими.
- Редактор. Расположен в верхней половине экрана. Позволяет выбрать функцию.
- Секвенсор. Размещён чуть ниже редактора, дает информацию о частоте колебаний.
- Регулятор. Контролирует и настраивает частоту изменений.
- Выходы сигналов. Обычно располагаются под экраном в самом низу прибора. Рядом – кнопка включения оборудования.
Смещение сигнала и его амплитуда обычно регулируются 2 кнопками. Работа с файлами происходит через мини-панель. Она дает пользователю просмотреть результаты тестирования или сохранить их для будущего анализа.
Принцип действия
Рассмотрим схему действия на примере простейшего электронного генератора. Есть проводник и магнитное поле, по которому он движется. В качестве проводника обычно используют рамку.
Принцип действия таков:
- Рамка крутится внутри поля и пересекает линии магнитной индукции, отчего образуется электродвижущая сила.
- Электродвижущая сила воздействует на ток, который начинает двигаться по рамке.
- Электроток проникает в наружную цепь за счет контактных колец.
Схема генератора похожа на схему усилителя. Разница в том, что у первого нет источника входного сигнала. Он заменяется сигналом положительной обратной связи (ПОС).
В процессе обратной связи (ОС) часть выходного сигнала направляется на входную цепь. Структура такого импульса задается спецификой цепи обратной связи. Чтобы обеспечить нужную периодичность колебаний, цепи ОС создают на базе LC или RC-цепей. Частота будет зависеть от времени перезарядки конденсатора.
После формировки в цепи ПОС сигнал отправляется на вход усилителя. Там он умножается в несколько раз и поступает на выход. Оттуда часть отправляется на вход посредством цепи ПОС и снова ослабляется, возвращаясь к исходному значению. Благодаря такой схеме внутри устройства поддерживается постоянная амплитуда выходного сигнала.
Как устроен генератор смешанных сигналов?
Принцип действия генератора смешанных импульсов направлен на то, чтобы ускорить образование сигналов и воспроизводить их с максимальной точностью. Передняя панель прибора снабжена органами управления для контроля самых важных и часто изменяемых параметров. Менее востребованные и редко используемые функции можно найти в меню на основном экране.
Регулятором уровня устанавливается амплитуда движения выходного сигнала. Амплитуду и смещение можно регулировать без входа в многоуровневую систему меню.
Отдельный регулятор также позволяет изменить частоту дискретизации путем изменения периодичности выходного сигнала. При этом форму последнего этот настройщик изменить не сможет. Такая функция есть лишь в меню на основном экране редактирования. Форму выбирают при помощи сенсорной панели или мышки. Пользователь открывает нужную страницу и просто заполняет бланк с цифровой клавиатуры или поворотной ручкой.
Виды генераторов сигналов
Приборы различаются по ряду характеристик. Например, по форме сигнала (синусоидальные, прямоугольные, в виде пилы), по частоте (низкочастотные, высокочастотные), по принципу возбуждения (независимое, самовозбуждение). Однако существует несколько основных видов — о них и расскажем подробнее.
Синусоидальный
Прибор усиливает первоначальный синусоидный код в десятки раз. На выходе получается частота до 100 МГц. При этом исходный синус, как правило, не превышает 50 МГц. Генераторы синусоидального импульса активно используют при проверке блоков питания, инверторов и другой высокочастотной техники, а также радиоаппаратуры.
Генератор низкочастотный
Ниже схема самого простого низкочастотного генератора. На ней видно, что в приборе присутствуют переменные резисторы. Они позволяют корректировать форму и частоту сигнала. Изменить силу импульса можно подключенным модулятором KK202.
Такой прибор подойдет для настройки аудиоаппаратуры (звуковых усилителей, проигрывателей). Наиболее доступным вариантом низкочастотного генератора является обычный компьютер. Достаточно скачать драйверы и подключить его к аппаратуре через переходник.
Генератор звуковой частоты
Стандартная конструкция с микросхемами внутри. Напряжение подается в селектор, а сам сигнал генерируется в одной или нескольких микросхемах. Частоту можно настраивать при помощи модуляционного регулятора. Прибор отличается более обширным диапазоном частоты, чем аналоги (до 2000 кГц).
Импульсы произвольной формы
Генераторы с импульсами произвольной формы имеют повышенную точность. Погрешность минимальная — до 3%. Выходной импульс подвергается тонкой регулировке с применением шестиканального селектора. Прибор вырабатывает частоту от 70 Гц.
Устройства делят по степени синхронизации. Зависит она от типа коннектора, который установлен в прибор. Поэтому сигнал может усиливаться за 15-40 ньютон-секунд. Некоторые модели работают на 2 режимах – линейном и логарифмическом. Режим меняется переключателем, за счет чего корректируется амплитуда.
Контроллеры сложных сигналов
В сборке присутствуют только многоканальные селекторы, так как приборы получают импульсы сложной формы. Сигналы многократно усиливаются, режим можно изменить при помощи регулятора. Вариацией такого прибора считается DDS (устройство по схеме прямого цифрового синтеза).
Базовая плата оборудуется микроконтроллерами, которые легко снимаются и ставятся на место. В некоторых моделях можно заменить микроконтроллер одним движением. Если редактор монтированный, ограничители установить нельзя. Прибор генерирует измерительный сигнал мощностью до 2000 кГц с погрешностью до 2%.
Генератор цифрового сигнала
Цифровые генераторы популярны, потому что отличаются высокой точностью. Пользоваться ими удобно, однако они нуждаются в тщательной настройке. Здесь стоят коннекторы KP300, резисторы достигают сопротивления от 4 Ом. Это позволяет добиться предельно допустимого внутреннего напряжения в схеме.
Области применения
Генераторы сигналов используют современные лаборатории разработчиков электронных и измерительных приборов. Одинаковые генераторы могут применяться в кабинетах от начального до продвинутого уровня.
Однако эти функциональные устройства применяют для настройки и тестирования оборудования и в областях, более доступных обывателю. Вот лишь неполный список устройств, которые используют генераторы:
- мобильные телефоны, техника для передачи данных, радио- и телеприемники;
- вычислительные приборы;
- инверторы, источники бесперебойного питания от электричества или импульсов;
- бытовые приборы (СВЧ-печи, стиральные и посудомоечные машины);
- измерительные приборы (амперметры, вольтметры, осциллографы);
- медицинская аппаратура (томографы, электрокардиографы, аппараты УЗИ).
Находчивые пользователи применяют устройства и для иных целей. Например, прибором Tektonix AFG 3000 измеряли емкости, а RStamp SMA100A хорошо показал себя в регулировке аэронавигационных систем.
Электронные генераторы
Генераторами называются электронные устройства, преобразующие энергию источника постоянного тока в энергию переменного тока (электромагнитных колебаний) различной формы требуемой частоты и мощности.
Электронные генераторы применяются в радиовещании, медицине, радиолокации, входят в состав аналого-цифровых преобразователей, микропроцессорных систем и т. д.
Ни одна электронная система не обходится без внутренних или внешних генераторов, задающих темп ее работы. Основные требования к генераторам – стабильность частоты колебаний и возможность снятия с них сигналов для дальнейшего использования.
Классификация электронных генераторов:
1) по форме выходных сигналов:
— сигналов прямоугольной формы (мультивибраторы);
— сигналов линейно изменяющегося напряжения (ГЛИН) или их еще называют генераторами пилообразного напряжения;
— сигналов специальной формы.
2) по частоте генерируемых колебаний (условно):
— низкой частоты (до 100 кГц);
— высокой частоты (свыше 100 кГц).
3) по способу возбуждения:
— с независимым (внешним) возбуждением;
— с самовозбуждением (автогенераторы).
Автогенератор — генератор с самовозбуждением, без внешнего воздействия преобразующий энергию источников питания в незатухающие колебания, например, колебательный контур.
Рисунок 1 – Структурная схема генератора
Схемы электронных генераторов (рисунок 1) строятся по тем же схемам, что и усилители, только у генераторов нет источника входного сигнала, его заменяет сигнал положительной обратной связи (ПОС). Напоминаем, что обратная связь — это передача части выходного сигнала во входную цепь. Необходимая форма сигнала обеспечивается структурой цепи обратной связи. Для задания частоты колебаний цепи ОС строятся на LC или RC-цепях (частоту определяет время перезаряда конденсатора).
Сигнал, сформированный в цепи ПОС, поступает на вход усилителя, усиливается в К раз и поступает на выход. При этом часть сигнала с выхода возвращается на вход через цепь ПОС, где ослабляется в К раз, что позволят поддерживать постоянную амплитуду выходного сигнала генератора.
Генераторы с независимым внешним возбуждением (избирательные усилители) являются усилителями мощности с соответствующим частным диапазоном, на вход которых подаётся электрический сигнал от автогенератора. Т.е. происходит усиление только определенной полосы частот.
Для создания генераторов низкой частоты обычно используют операционные усилители, в качестве цепи ПОС устанавливают RC-цепи для обеспечения заданной частоты f0 синусоидальных колебаний.
RC-цепи представляют собой частотные фильтры — устройства, пропускающее сигналы в определённом диапазоне частот и не пропускающее в не этого диапазона. При этом по цепи обратной связи на вход усилителя возвращается, а значит и усиливается только определённая частота или полоса частот.
На рисунке 2 показаны основные типы частотных фильтров и их амплитудно-частотная характеристика (АЧХ). АЧХ показывает пропускную способность фильтра в зависимости от частоты.
Рисунок 2 – Типы частотных фильтров и их амплитудно-частотная характеристика
— фильтры нижних частот (ФНЧ);
— фильтры верхних частот (ФВЧ);
— полосовые частотные фильтры (ПЧФ);
-заграждающие частотные фильтры (ЗЧФ).
Фильтры характеризуются частотой среза fc, выше либо ниже которой идет резкое ослабление сигнала. Полосовые и заграждающие фильтры характеризуются также шириной полосы пропускания у ПЧФ (непропускания у ЗЧФ).
На рисунке 3 приведена схема синусоидального генератора. Необходимый коэффициент усиления задаётся с помощью цепи ООС на резисторах R1, R2.Для обеспечения сдвига по фазе равного 0, цепь ПОС подключена между выходом ОУ и его неинвертирующим входом. При этом цепь ПОС представляет собой полосовой фильтр. Частота резонанса f0 определяется по формуле: f0 = 1/(2πRC)
Для стабилизации частоты генерируемых колебаний в качестве частотозадающей цепи используют кварцевые резонаторы. Кварцевый резонатор представляет собой тонкую пластину минерала, установленную в кварцедержателе. Как известно, кварц обладает пьезоэффектом, что позволяет использовать его как систему, эквивалентную электрическому колебательному контуру и обладающую резонансными свойствами. Резонансные частота кварцевых пластин лежат в пределах от нескольких единиц килогерц до тысяч МГц с нестабильностью частоты, обычно порядка 10 -8 и ниже.
Рисунок 3 – Схема RC-генератора синусоидальных сигналов
Мультивибраторы — это электронные генераторы сигналов прямоугольной формы.
Мультивибратор в подавляющем большинстве случаев выполняет функцию задающего генератора, формирующего запускающие входные импульсы для последующих узлов и блоков в системе импульсного или цифрового действия.
На рисунке 4 приведена схема симметричного мультивибратора на ИОУ. Симметричный – время импульса прямоугольного импульса равно времени паузы tимп = tпаузы.
ИОУ охвачен положительной обратной связью – цепь R1,R2, действующей одинаково на всех частотах. Напряжение на неивертирующем входе постоянно и зависит от сопротивления резисторов R1,R2. Входное напряжение мультивибратора формируется при помощи ООС через цепочку RC.
Рисунок 4 – Схема симметричного мультивибратора
Уровень напряжения на выходе изменяется с +Uнас на -Uнас и обратно.
Если напряжение выхода Uвых = +Uнас конденсатор заряжается и напряжение Uс, действующее на инвертирующем входе возрастает по экспоненциальному закону (рис. 5).
При равенстве Uн = Uс произойдёт скачкообразное изменение выходного напряжения Uвых = -Uнас, что вызовет перезаряд конденсатора. При достижении равенства -Uн = -Uс снова произойдёт изменение состояние Uвых. Процесс повторяется.
Рисунок 5 – Временные диаграммы работы мультивибратора
Изменение постоянной времени RC-цепи приводит к изменению времени заряда и разряда конденсатора, а значит и частоты колебаний мультивибратора. Кроме того, частота зависит от параметров ПОС и определяется по формуле: f = 1/T = 1/2tи = 1/[2 ln(1+2 R1/R2)]
При необходимости получить несимметричные прямоугольные колебания для tи ≠ tп, используют несимметричные мультивибраторы, в которых перезаряд конденсатора происходит по разным цепочкам с различными постоянными времени.
Одновибраторы (ждущие мультивибраторы) предназначены для формирования прямоугольного импульса напряжения требуемой длительности при воздействии на входе короткого запускающего импульса. Одновибраторы часто называют еще электронными реле выдержки времени.
В технической литературе встречается еще одно название одновибратора – ждущий мультивибратор.
Одновибратор обладает одним длительно устойчивым состоянием равновесия, в котором он находится до подачи запускающего импульса. Второе возможное состояние является временно устойчивым. В это состояние одновибратор переходит под действием запускающего импульса и может находиться в нем конечное время tв, после чего автоматически возвращается в исходное состояние.
Основными требованиями к одновибраторам являются стабильность длительности выходного импульса и устойчивость его исходного состояния.
Генераторы линейно-изменяющихся напряжений (ГЛИН) формируют периодические сигналы, изменяющиеся по линейному закону (пилообразные импульсы).
Пилообразные импульсы характеризуются длительностью рабочего хода tр, длительностью обратного хода tо и амплитудой Um (рисунок 6, б).
Для создания линейной зависимости напряжения от времени чаще всего используют заряд (или разряд) конденсатора постоянным током. Простейшая схема ГЛИН приведена на рисунок 6, а.
Когда транзистор VT закрыт, конденсатор С2 заряжается от источника питания Uп через резистор R2. При этом напряжение на конденсаторе, а значит и на выходе линейно возрастает. При поступлении на базу положительного импульса транзистор открывается, и конденсатор быстро разряжается через его малое сопротивление, чем обеспечивается быстрое уменьшение выходного напряжения до нуля – обратный ход.
ГЛИН применяются в устройствах развертки луча в ЭЛТ, в аналого-цифровых преобразователях (АЦП) и других преобразовательных устройствах.
Рисунок 6 – а) Простейшая схема для формирования линейно изменяющегося напряжения б) Временная диаграмма импульсов пилообразной формы.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Конструкции генераторов. Примеры схем
Неотъемлемой частью почти любого электронного устройства является генератор гармонических или каких-либо других колебаний.
Самые очевидные использования генераторов, например, в качестве источников синусоидальных сигналов, каких-либо функций, импульсов.
Источник регулярных колебаний необходим в любом периодически действующем измерительном приборе, в устройствах, инициирующих измерения или технологические процессы. Вообще в любом приборе, работа которого связана с периодическими состояниями или периодическими колебаниями. Они присутствуют практически везде. Так, например, генераторы колебаний специальной формы используются в цифровых мультиметрах, осциллографах, радиоприемниках, ЭВМ, в любом периферийном устройстве ЭВМ, почти в любом цифровом приборе (счетчики, таймеры, калькуляторы и любые приборы с «многократным отображением») и во множестве других устройств, слишком многочисленных, чтобы их здесь перечислять.
Устройство без генератора либо вообще ни на что не способно, либо предназначено для подключения к другому (которое скорее всего содержит генератор). Не будет преувеличением сказать, что генераторы являются таким же необходимым устройством в электронике, как регулируемый источник питания постоянного тока.
В зависимости от конкретного применения генератор может использоваться просто как источник регулярных импульсов («часы» в цифровой системе). От него может потребоваться стабильность и точность (например, опорный интервал времени в частотомере), регулируемость (гетеродин передатчика или приемника) или способность генерировать колебания в
точности заданной формы (как например, генератор горизонтальной развертки осциллографа).
Релаксационный генератор
Очень простой генератор можно получить несложными манипуляциями. Зарядим конденсатор через резистор (или источник тока), а затем, когда напряжение достигнет некоторого порогового значения, быстро его разрядим и начнем цикл сначала. Это можно сделать с помощью внешней цепи, обеспечивающей изменения полярности тока заряда при достижении некоторого порогового напряжения. Следовательно, будут генерироваться колебания треугольной формы, а не пилообразные. Генераторы, построенные на этом принципе, известны под названием «релаксационные генераторы». Они просты и недороги и при умелом проектировании могут обеспечивать удовлетворительную стабильность по частоте.
Раньше для создания релаксационных генераторов применялись устройства с отрицательным сопротивлением, такие, как однопереходные транзисторы или неоновые лампы. Теперь предпочитают ОУ или специальные интегральные схемы таймеров. На рисунке показан классический релаксационный RС-генератор.
Работает он просто. Допустим, что при начальном включении питания выходной сигнал ОУ выходит на положительное насыщение (каким образом это произойдет — неважно). Конденсатор начинает заряжаться до напряжения с постоянной времени, равной Когда напряжение на конденсаторе достигнет половины напряжения источника питания, ОУ переключается в состояние отрицательного насыщения (он включен как триггер Шмитта). Конденсатор начинает разряжаться до самой постоянной времени. Этот цикл повторяется бесконечно, с периодом 2,2 не зависит от напряжения источника питания.
Применяя для заряда конденсатора источники тока, можно получить колебания хорошей треугольной формы. Пример удачной схемы (datasheet СА3160):
Иногда необходим генератор с очень низким уровнем шума (так называемый «низкий внеполосный шум»). В этом отношении хороша простая схема, показанная на рисунке:
В схеме используется пара КМОП-инверторов (в виде цифровых логических схем). Соединение инверторов между собой образует некоторую разновидность релаксационного генератора с выходным сигналом в виде прямоугольного колебания. Измерения, проведенные для этой схемы, работающей на частоте 100 кГц, показали, что плотность мощности шума в ближайшей боковой полосе ниже, по крайней мере, на 85 дБ уровня основного колебания. Иногда встречается аналогичная схема, в которой заменяют местами элементы и Хотя это и превосходный генератор, но он уже имеет крайне зашумленный выходной сигнал.
Представленная на рисунке ниже схема имеет даже более низкий уровень шума.
Кроме того, имеется возможность модулировать выходную частоту с помощью внешнего тока, прикладываемого к базе транзистора Т1. В этой схеме транзистор Т1 функционирует как интегратор. На коллекторе Т1 вырабатывается сигнал асимметричной треугольной формы. Сами же инверторы работают в качестве неинвертирующего компаратора. Изменяют полярность возбуждения на базе каждые полпериода. Эта схема имеет плотность шума — 90 дБД/Гц, измеренную на частоте 100Гц смещения от несущего колебания 150 кГц, и —100 дБД/Гц, измеренную при смещении 300 Гц. Эти схемы превосходны в отношении уровня бокового шума. Но генерируемая частота имеет большую чувствительность к колебаниям напряжения источника питания.
Генератор импульсов
Генератор формирует одиночный импульс прямоугольной формы по нажатию на кнопку. Схема собрана на логических элементах в основе которой обычный RS-триггер, благодаря ему также исключается возможность проникновения импульсов дребезга контактов кнопки на счетчик.
В положении контактов кнопки, как показано на схеме, на первом выходе будет присутствовать напряжение высокого уровня, а на втором выходе низкого уровня или логического нуля при нажатой кнопке состояние триггера поменяется на противоположное. Этот генератор отлично подойдет для проверки работы различных счетчиков
В этой схемы формируется одиночный импульс, длительность которого не зависит от длительности входного импульса. Используется такой генератор в самых разнообразных вариантах: для имитации входных сигналов цифровых устройств, при проверке работоспособности схем на основе цифровых микросхем, необходимости подачи на какое-то тестируемое устройство определенного числа импульсов с визуальным контролем процессов и т. д
Как только включают питание схемы конденсатор С1 начинает заряжается и реле срабатывает, размыкая своими фронтовыми контактами цепь источника питания, но реле отключится не сразу, а с задержкой, так как через его обмотку будет протекать ток разряда конденсатора С1. Когда тыловые контакты реле опять замкнутся, начнется новый цикл. Частота переключении электромагнитного реле зависит от емкости конденсатора С1 и резистора R1.
Использовать можно почти любое реле, я взял РЭС-15. Такой генератор можно использовать, например, для переключения елочных гирлянд и других эффектов. Минусом данной схемы является применение конденсатора большой емкости.
Другая схема генератора на реле, с принципом работы аналогичной предыдущей схеме, но в отличии от нее, частота следования равна 1 Гц при меньшей емкости конденсатора. В момент включения генератора конденсатор С1 начинает заряжаться, затем открывается стабилитрон и сработает реле К1. Конденсатор начинает разряжаться через резистор и составной транзистор. Через небольшой промежуток времени реле выключается и начинается новый цикл работы генератора.
В генераторе импульсов, на рисунке А, применены три логических элемента И-НЕ и униполярный транзистор VT1. В зависимости от значений конденсатора С1 и резисторов R2 и R3 на выходе 8 генерируются импульсы с частотой 0,1 — до 1 МГц. Такой огромный диапазон объясняется применению в схеме полевого транзистора, что дало возможность использовать мегаомные резисторы R2 и R3. С помощью их можно менять также менять скважность импульсов: резистором R2 задается длительность высокого уровня, а R3 — длительность напряжения низкого уровня. Транзистор VT1 можно взять любой из серий КП302, КП303. Микросхема — К155ЛА3.
Если использовать вместо К155ЛА3 микросхемы КМОП например К561ЛН2 можно сделать широкодиапазонный генератор импульсов без использования в схеме полевого транзистора. Схема этого генератора показана на рисунке В. Для расширения количества генерируемых частот емкость конденсатора времязадающей цепи выбирается переключателем S1. Диапазон частот этого генератора 1ГЦ до 10 кГц.
На последнем рисунке рассмотрена схема генератора импульсов в которой заложена возможность регулировки скважности. Для тех кто забыл, напомним. Скважность импульсов это отношение периода следования (Т) к длительности (t):
Скважность на выходе схемы можно задать от 1 до нескольких тысяч, с помощью резистора R1. Транзистор работающий в ключевом режиме предназначен для усиления импульсов по мощности
Если есть необходимость высокостабильного генератора импульсов, то необходимо использовать кварц на соответствующую частоту.
Схема генератора показанная на рисунке способна вырабатывать импульсы прямоугольной и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3 цифровой микросхемы К561ЛН2. Резистор R2 в паре с конденсатором С2 образуют дифференцирующую цепь, которая на выходе DD1.5 генерирует короткие импульсы длительностью 1 мкс. На полевом транзисторе и резисторе R4 собран регулируемый стабилизатор тока. С его выхода течет ток заряжающий конденсатор С3 и напряжение на нем линейно увеличивается. В момент поступления короткого положительного импульса транзистор VT1 открывается, а конденсатор СЗ разряжается. Тем самым формируя пилообразное напряжение на его обкладках. Переменным резистором можно регулировать ток заряда конденсатора и крутизну импульса пилообразного напряжения, а также его амплитуду.
Вариант схемы генератора на двух операционных усилителях
Схема построена с использованием двух ОУ типа LM741. Первый ОУ используется для генерации прямоугольной формы, а второй генерирует треугольную. Схема генератора построена следующим образом:
В первом LM741 на инвертирующий вход с выхода усилителя подключена обратная связь (ОС) выполненная на резисторе R1 и конденсаторе C2, а на неинвертирующий вход также идет ОС, но уже через делитель напряжения, на базе резисторов R2 и R5. Выходной первого ОУ непосредственно связан с инвертирующим входом второго LM741 через сопротивление R4. Этот второй ОУ вместе с R4 и C1 образуют схему интегратора. Его неинвертирующий вход заземлен. На оба ОУ подаются напряжения питания +Vcc и –Vee, как обычно на седьмой и четвертый выводы.
Работает схема следующим образом. Предположим, что первоначально на выходе U1 имеется +Vcc. Тогда емкость С2 начинает заряжаться через резистор R1. В определенный момент времени напряжение на С2 превысит уровень на неинвертирующем входе, что расчитывается по формуле ниже:
Выходной сигнал V1 станет –Vee. Так, конденсатор начинает разряжаться через резистор R1. Когда напряжение на емкости станет меньше напряжения, определяемого формулой, выходной сигнал снова будет + Vcc. Таким образом, цикл повторяется, и благодаря этому генерируются импульсы прямоугольной формы с периодом времени, определяемым RC-цепочкой, состоящей из сопротивления R1 и конденсатора C2. Эти образования прямоугольной формы также являются входными сигналами для схемы интегратора, который преобразует их в треугольную форму. Когда выход ОУ U1 равен +Vcc, емкость С1 заряжается до максимального уровня и дает положительный, восходящий склон треугольника на выходе ОУ U2. И, соответственно, если на выходе первого ОУ имеется –Vee, то будет формироваться отрицательный, нисходящий склон. Т.е, мы получаем треугольную волну на выходе второго ОУ.
Генератор импульсов на первой схеме построен на микросхеме TL494 отлично подходит для наладки любых электронных схем. Особенность этой схемы заключается в том, что амплитуда выходных импульсов может быть равна напряжению питания схемы, а микросхема способна работать вплоть до 41 В, ведь не просто так ее можно найти в блоках питания персональных компьютеров.
Разводку печатной платы вы можете скачать по ссылке выше.
Частоту следования импульсов можно изменят переключателем S2 и переменным резистором RV1, для регулировки скважности используется резистор RV2. Переключатель SA1 предназначен для изменения режимы работы генератора с синфазного на противофазный . Резистор R3 должен перекрывать диапазон частот, а диапазон регулировки скважности регулируется подбором R1, R2
Конденсаторы С1-4 от 1000 пФ до 10 мкФ. Транзисторы любые высокочастотные КТ972
Подборка схем и конструкций генераторов прямоугольных импульсов. Амплитуда генерируемого сигнала в таких генераторах очень стабильна и близка к напряжению питания. Но форма колебаний весьма далека от синусоидальной — сигнал получается импульсным, причем длительность импульсов и пауз между ними легко регулируется. Импульсам легко придать вид меандра, когда длительность импульса равна длительности паузы между ними
Формирует мощные короткие одиночные импульсы, которые устанавливают на входе или выходе любого цифрового элемента логический уровень, противоположный имеющемуся. Длительность импульса выбрана такой, чтобы не вывести из строя элемент, выход которого подключен к испытуемому входу. Это дает возможность не нарушать электрической связи испытуемого элемента с остальными.
Источник: