Электромобиль с водородным генератором

Электромобиль с водородным генератором

Содержание
  1. Из чего это сделано: водородные топливные ячейки
  2. Справочная: как работают водородные автомобили и когда они появятся на дорогах
  3. Когда появились первые автомобили на водороде?
  4. А где брать водород?
  5. Как работает топливная система и какие есть варианты?
  6. Такие автомобили опасны? Почему?
  7. Какой срок службы у топливных ячеек?
  8. Какие компании уже выпускают или собираются выпускать автомобили на водороде?
  9. Сколько это стоит?
  10. Чем водородные авто лучше электромобилей?
  11. Какие перспективы у водородных машин и когда их можно будет увидеть на дорогах?
  12. Водородные автомобили против электромобилей: фейк или реальное противостояние?
  13. Краткая история технологии
  14. Преимущества и недостатки водородных гибридов
  15. Что выгоднее: водород или электричество
  16. Перспективы развития
  17. Электротранспорт против водородного: существует ли противостояние на самом деле
  18. Автомобиль на водороде. Пора ли прощаться с бензином?
  19. Ищем доброту внутри водородомобиля Toyota Mirai
  20. Водородные автомобили
  21. Когда впервые стали использовать водород в автомобиле
  22. Откуда берут водород
  23. Особенности водорода как топлива для двигателя
  24. Как устроен электромобиль на топливных элементах
  25. Принцип работы водородного двигателя

Из чего это сделано: водородные топливные ячейки

Найти новый источник энергии и перестать зависеть от нефти — такова задача, которую автомобильные инженеры решают уже не первый десяток лет. Современность предлагает много вариантов: более экологичный газ, продвинутый электромобиль или компромиссный гибрид. Но сегодня речь пойдет о другом решении — технологии водородных топливных ячеек.

Вода из выхлопной трубы?

Итак, есть еще один вариант того, что можно сжигать в ДВС вместо бензина или дизельного топлива, — это водород. Известно, что продуктом окисления водорода является вода. Сжигаем водород в кислороде, получаем энергию для работы поршней, а на выходе — водяной пар. Ну не прекрасно ли? И все же есть свои нюансы: водород при сгорании выделяет больше тепла, чем нефтепродукты, тем самым чересчур раскаляя двигатель. Кроме того, сгорая с воздухом, а не с чистым кислородом, он создает ряд вредных примесей. Все это не позволяет просто так сжигать водород в ДВС.

Однако есть и другое решение, предусматривающее использование водорода в качестве топлива. Еще 200 лет назад был изобретен генератор, в котором водород, соединяясь с кислородом, производит воду, а «побочным» продуктом реакции становится электричество. В двух словах принцип работы таков: объемная ячейка разделяется на две половины пластиной из особого материала, способного пропускать протоны и не пропускать электроны. В каждой из половин ячейки устанавливаются два электрода, связанные между собой в электрическую цепь. В одну половину ячейки подается водород, в другую — кислород. Катализатор, нанесенный на разделяющую мембрану, активирует реакцию водорода с кислородом; при этом атомы водорода расщепляются на протоны и электроны. Протоны проходят сквозь мембрану и, соединяясь с кислородом, дают воду. А электроны уходят в подсоединенную электрическую цепь, давая ток.

Такие водородно-кислородные топливные элементы уже применялись в космосе: они питали энергией советский многоразовый корабль «Буран».

Из космоса в автомобиль

Топливный элемент такого типа удалось приспособить и для автомобиля, причем один из первых вариантов предложили отечественные конструкторы. Компактный водородный генератор состоит из множества ячеек, принцип работы которых описан выше. Напряжение каждой ячейки низкое — от 0.6 до 1.0 В, но, если соединить ячейки последовательно, можно получить необходимое высокое напряжение.

Дальше всех в этом направлении продвинулись японские инженеры. Совместными усилиями специалистов Toyota и DENSO удалось создать эффективный водородно-воздушный генератор, который стал основой для серийной Toyota Mirai.

Система топливных ячеек вырабатывает энергию, комбинируя водород с кислородом из наружного воздуха. Японским инженерам удалось создать наиболее эффективную систему топливных элементов, достигшую высокой выходной мощности при относительной компактности и малом весе, благодаря использованию композитных баков и компактного силового оборудования.

Вклад DENSO

Блок управления мощностью (PCU) Toyota Mirai производства DENSO решает, когда и как использовать производимую водородным генератором электроэнергию: часть ее система перенаправляет для хранения в литий-ионную батарею. Эта же батарея дополнительно заряжается и при рекуперации энергии торможения. При необходимости выдачи пиковой мощности (во время старта и разгона) используется как энергия водородного генератора, так и запасы батареи.

Во время работы силовой установки Mirai из трубы действительно идет дистиллированная вода — вообще никаких выбросов! Специалистам DENSO также удалось решить вопрос с быстрой и безопасной заправкой автомобиля водородом благодаря внедрению беспроводной связи с заправочной станцией, по которой передается вся информация о состоянии топлива в баках (о температуре и давлении водорода).

Запас хода Toyota Mirai второго поколения составляет внушительные 800 км (по циклу NEDC); при этом время полной заправки длится от 3 до 5 минут, что несравнимо быстрее, чем у электромобиля. Второе поколение Mirai с усовершенствованными топливными ячейками дебютировало на Токийском автосалоне два месяца назад, а уже в 2020 году этот автомобиль поступит в серийное производство.

Когда-нибудь — возможно, и не в столь отдаленном, как нам кажется, будущем — в каталоге DENSO для рынка послепродажного обслуживания автомобилей появятся, например, компоненты управления водородной силовой установкой. А пока в нем представлены более традиционные запчасти, обладающие, тем не менее, оригинальным качеством, надежностью и отличными рабочими характеристиками. Подобрать подходящие запчасти можно в нашем электронном каталоге.

Справочная: как работают водородные автомобили и когда они появятся на дорогах

В Испании, где я сейчас живу, довольно много электромобилей — встречаю их практически каждый день, как на дорогах, так и на станциях для зарядки. И каждый год электрокаров становится все больше (не только в Испании, конечно). Но есть и альтернатива — автомобили на водородном топливе, которые тоже не загрязняют природу, поскольку их выхлоп — вода. Тема сегодняшней справочной — водородные машины, принцип их работы и перспективы.

Когда появились первые автомобили на водороде?

Изобрел двигатель внутреннего сгорания, работающий на водороде, Франсуа Исаак де Ривас (François Isaac de Rivaz) в 1806 году. Водород он получал с помощью электролиза воды. Поршневой двигатель, который создал изобретатель, называют машиной де Риваса (De Rivaz engine).

Зажигание было искровым, двигатель имел шатунно-поршневую систему работы. Ну а цилиндр приводился в движение детонацией смеси водорода и кислорода электрической искрой — ее приходилось генерировать вручную в момент опускания поршня. Через два года этот же изобретатель построил уже самодвижущееся устройство с водородным двигателем.

Но более-менее широко применять водород для работы автомобильных двигателей стали много лет спустя. В 1941 году в блокадном Ленинграде автомобильные двигатели ГАЗ-АА были модифицированы инженер-лейтенантом Б. И. Шелищем. Движки управляли лебедками аэростатов заграждения (их заправляли водородом, и запасов газа в Ленинграде было много), но это были автомобильные двигатели. Кроме того, были модифицированы и несколько сотен движков в автомобилях.

Начиная с 1980-х сразу в нескольких странах, включая США, Японию, Германию, СССР и Канаду стартовало экспериментальное производство по созданию автомобилей, работающих на водороде, бензин-водородных смесях и смесях водорода с природным газом.

В 1982 году нефтеперерабатывающий завод «Квант» и завод РАФ разработали первый в мире экспериментальный водородный микроавтобус «Квант-РАФ» с комбинированной энергоустановкой на основе водородо-воздушного топливного элемента мощностью 2 кВт и никель-цинковой аккумуляторной батареи емкостью 5 кВт*ч.

На протяжении многих лет такие автомобили разрабатывали в разных странах по большей части в качестве эксперимента. После того, как концепция «зеленого» автомобиля стала популярной, автомобилями на водороде заинтересовались крупные корпорации вроде Toyota. Начиная с 2000-х, автомобильные компании стали разрабатывать концепты коммерческих авто.

А где брать водород?

Водород можно получать разными методами:

  • паровая конверсия метана и природного газа;
  • газификация угля;
  • электролиз воды;
  • пиролиз;
  • биотехнологии.

Наиболее экономичным способом производства водорода сейчас считается паровая конверсия. Так называют получение водорода из легких углеводородов (метан, пропан-бутановая фракция) с использованием парового риформинга. Риформингом называют процесс каталитической конверсии углеводородов в присутствии водяного пара. Водяной пар смешивается с метаном при высокой температуре (700–1000 Сº) и большом давлении с использованием катализатора.

При паровой конверсии водород получать дешевле, чем используя любые другие методы, включая электролиз.

Наиболее безвредный способ производства водорода — электролиз — получение водорода из воды с использованием электрического тока. Чистота выхода водорода близка к 100%. Если не считать загрязнение для получения электричества, такие установки почти безвредны для окружающей среды, поскольку в процессе работы выделяются только водород и кислород.

Еще один безопасный для окружающей среды способ получения водорода — реактор с биомассой.

Источник

Производить водород можно и на крупной фабрике, и на относительно небольшом предприятии. Чем масштабнее производство — тем ниже себестоимость газа. Но зато в первом случае увеличиваются расходы на доставку водорода к местам заправки машин.

Как работает топливная система и какие есть варианты?

Лучше всего рассмотреть принцип работы такой системы на примере серийных водородных авто Toyota Mirai. Основа — топливный элемент, электрохимическая система, преобразующая частицы водорода и кислорода в воду. Внутри такого элемента — протонпроводящая полимерная мембрана, которая разделяет анод и катод. Обычно это угольные пластины с нанесенным катализатором.

На катализаторе анода молекулярный водород теряет электроны, катионы проводятся через мембрану к катоду, а электроны отдаются во внешнюю цепь. На катализаторе катода молекулы кислорода соединяются с электроном и протоном, образуя воду. Пар или жидкость — это единственный продукт реакции.

Преимущество топливных ячеек на основе протонообменных мембран — высокая удельная мощность и относительно низкая рабочая температура. Они быстро греются и почти сразу после старта начинают производить энергию.

В Mirai используются топливные элементы с высокой удельной мощностью на единицу объема (3,2 кВт/л), максимальная их мощность 124 кВт. Произведенный топливным элементом постоянный ток преобразуется в переменный с одновременным повышением напряжения до 650 В. Электричество поступает в литий-ионный аккумулятор. Для движения машина расходует запасенную в нем энергию.

Водород в топливный элемент Mirai поступает из баллонов высокого давления (около 700 атм). Блок управления в автомобиле контролирует режим работы топливного элемента и зарядку/разрядку аккумулятора.

По данным Toyota на 100 км пути Mirai требуется до 750 граммов водорода. Владельцы Mirai говорят о примерно килограмме водорода на 100 км пути.

Такие автомобили опасны? Почему?

Поскольку водород — горючий газ, то транспортировать и хранить его нужно осторожно. Нужны высокочувствительные газоанализаторы, которые смогут дать сигнал в случае утечки. Правда, водород очень летучий газ (ведь это самый легкий химический элемент) и при попадании в атмосферу водород быстро поднимается вверх.

Сгорает он очень быстро. Дирижабль «Гинденбург» горел всего 32 секунды. Благодаря скоротечности пожара погибли далеко не все пассажиры, выжили 62 человека из 97, находившихся в гондоле дирижабля.

Тем не менее, если автомобилей на водороде станет много, то потребуются новые меры безопасности движения на дорогах. Машины с ДВС тоже опасны — в случае аварии и пробоя бака бензин или дизельное топливо вытекают на дорогу и могут воспламениться. Если будет пробит бак с водородом, газ очень быстро улетучится. Но если близко будет источник открытого огня или искр, водород может загореться.

В Mirai и других моделях водородных авто используются очень прочные баки для водорода. Toyota сделала свои баки пуленепробиваемыми, их стенки из сверхпрочного волокна выдерживают выстрелы из крупнокалиберного оружия. Для тестов компания наняла снайперов и пробить бак смогла только пуля калибром .50 после двойного попадания в одно и тоже место.

Если соблюдать меры безопасности, водородные автомобили не опаснее машин с ДВС.

Какой срок службы у топливных ячеек?

Пока что такая информация есть лишь для Mirai. Toyota заявляет, что одна ячейка гарантированно будет работать на протяжении 250 000 км. Затем, если работа ячейки ухудшается, ее можно заменить в сервисном центре.

Читайте также  Что такое диод генератор шума

Какие компании уже выпускают или собираются выпускать автомобили на водороде?

Водородные машины разрабатывают Honda, Toyota, Mercedes-Benz и Hyundai — у этих компаний уже есть готовые транспортные средства. Другие показывают пока лишь концепты (впрочем, рабочие) или просто красиво отрендеренные картинки. К числу первых можно отнести Audi и Ford, к числу вторых — BMW (справедливости ради нужно сказать, что в 2007 году BMW выпустила партию из 100 экспериментальных «водородных» моделей, которые так и остались экспериментом) и Lexus.

В серию запущены пока лишь Toyota Mirai и Honda Clarity. Их можно приобрести в США и Европе.

Сколько это стоит?

В настоящий момент водородные автомобили немного дороже обычных в плане эксплуатации. Так, при поездке в Европе протяженностью 480 км затраты на горючее для владельца обычной машины составят примерно $45, а вот владелец Mirai заплатит около $57. И это при том, что правительство некоторых стран субсидирует производство водорода для машин. Стоимость 1 кг водорода составляет в среднем $11.45.

Чем водородные авто лучше электромобилей?

Собственно, вопрос не совсем корректный. Дело в том, что и автомобиль на водороде, с топливной ячейкой, и «чистый» электрокар — это электромобили. Просто в одном случае машину заправляют водородом, во втором — электричеством.

Если сравнивать стоимость большинства электромобилей и Toyota Mirai, то они сравнимы, это несколько десятков тысяч долларов США. Стоимость Hyundai ix35 Fuel Cell составляет около $53 тыс., Toyota Mirai — $57 тыс., Honda Clarity — $59 тыс. Стоимость электрокаров Tesla начинается с $45 тыс. (базовая комплектация с прайсом в $35 тыс. пока доступна лишь для предзаказа). Электромобили от BMW стоят около $50 тыс.

Водородные автомобили быстро заправляются — на это уходит всего 3–5 минут, в отличие от электромобилей, где нужно от получаса до нескольких часов для подзарядки.

Основное достоинство водородного транспорта в том, что топливные ячейки служат много лет и практически не нуждаются в обслуживании. Если взять «чистый» электромобиль с его огромной батареей, то ее срок службы всего 1–1,5 тыс. циклов, то есть 3-5 лет. Причем водородный автомобиль без проблем будет работать на морозе (заводиться в том числе), а вот аккумулятор электромобиля потеряет заряд.

Какие перспективы у водородных машин и когда их можно будет увидеть на дорогах?

Водородные автомобили уже колесят по дорогам Европы и США (возможно, единичные экземпляры есть и в других регионах). Но их немного — несколько тысяч, что нельзя назвать массовым внедрением.

Проблема, которая сейчас мешает распространению водородных транспортных средств — отсутствие инфраструктуры (всего несколько лет назад аналогичная проблема была актуальной и для электромобилей). Нужны специализированные фабрики по производству водорода, транспортные системы для водорода и заправки.

Водородные АЗС в 2019 году(источник)

Кроме того, водород получается довольно дорогим, так что если электромобили покупают, в частности, для экономии на топливе, то в случае водородной машины — это не вариант. При массовом появлении фабрик по производству водорода для машин, а также сервисной инфраструктуры можно ожидать выхода гораздо большего числа транспортных средств на водороде на дороги общего пользования.

Но нет гарантии, что это вообще случится ли это или нет — пока неясно. Автопроизводители вроде Toyota активно продвигают свои машины и преимущества водорода в транспортной сфере. Но конкуренция слишком велика, как среди обычных машин с ДВС, так и среди электромобилей.

Водородные автомобили против электромобилей: фейк или реальное противостояние?

  1. Краткая история технологии
  2. Преимущества и недостатки водородных гибридов
  3. Что выгоднее: водород или электричество
  4. Перспективы развития
  5. Электротранспорт против водородного: существует ли противостояние на самом деле

Транспорт, работающий на водороде и электричестве, используют не первый десяток лет. Сегодня это одно из самых перспективных направлений в автомобилестроении, поэтому споры о том, что лучше — протон или электрон — разгораются все ярче. Только ли нулевой выхлоп привлекает инвесторов и на чьей стороне перевес?

Краткая история технологии

Технология двигателя внутреннего сгорания, основанная на работе водорода, отнюдь не нова. В первой половине XIX века ее изобрел Франсуа Исаак де Ривас, используя метод электролиза воды для получения топлива.

Вплоть до 1980-х годов в США, Германии, Канаде, Японии и СССР производство автомобилей, работающих на газе и бензиновых смесях, считалось экспериментальным, если не брать во внимание вынужденный переход на водород в бывшем Советском Союзе во времена Второй мировой войны.

История электромобилей не менее богата и продолжительна , однако этот вид транспорта стал популярен относительно недавно. Причиной тому можно назвать возникший в начале 2000-х годов тренд на экологичность. И здесь идея авто с нулевым выбросом выхлопных газов оказалась как никогда актуальной.

По ряду причин на это звание подходили только электромобили, но первые серийные модели имели ограниченный запас хода на одной зарядке. Вот тут-то и пригодился водород. Им снова заинтересовались крупные автоконцерны, такие, как Toyota и Hyundai.

Преимущества и недостатки водородных гибридов

Если сначала концерны осваивали разработку гибридов наподобие BMW Hydrogen 7 , где также использовался бензин, то в наши дни производители чаще говорят о перспективе использования топливных водородных ячеек.

Они заменят аккумуляторные батареи — главный источник питания электромобилей, чтобы увеличить запас хода авто и «отвязать» его от величины расстояния между заправками.

Так, китайская государственная компания SIAC заявила о том, что планирует выпустить к 2025 году более десятка моделей новой формации и запустить производство водородных топливных ячеек. Это заявление полностью отвечает экономической программе страны: в 2030 году в Китае планируется открыть 1000 специализированных заправочных станций.

Седан на водороде Toyota Mirai

Водородный транспорт перспективен, безопасность его использования на практике доказывают объемы продаж T oyota Mirai: только в 2019 году в мире было приобретено более 1500 авто этой модели. Однако и в этой отрасли есть свои « подводные камни »:

  1. Высокая стоимость производства топлива . Для получения водорода путем электролиза необходимы дорогостоящие катализаторы и энергоемкий процесс сжижения: на 1 кг водорода потребуется примерно 10–14 кВт*ч. К тому же для того чтобы обеспечить нужды всех автомобилей в стране, государствам придется увеличить ежедневный расход потребления электроэнергии в несколько раз (теоретически, как в случае с электромобилями).
  2. Сложности в организации промышленного хранения водорода и требование соблюдения особых правил эксплуатации при заправке или транспортировке топлива . Тем более что хранение обходится дороже, чем его производство по причине высоких требований безопасности.
  3. Отсутствие инфраструктуры заправочных станций . Например, в России первая из них появилась только в июле 2020 года.

На этом фоне электротранспорт выглядит более выгодным вариантом, тем более что заправочные станции давно вышли за рамки ареала Калифорнии.

Что выгоднее: водород или электричество

Сравним производительность и стоимость эксплуатации транспорта на водороде и электричестве:

Станции зарядки для электрокаров берут плату не за количество потребляемой электроэнергии, а за время подключения. Исходя из этого, можно рассчитать, сколько в итоге потратит владелец на одну поездку в конкретном регионе, заправляясь водородом или подпитываясь электроэнергией от домашней или коммерческой точки заряда.

А так как в России действующих заправок для водородных машин мало, оперировать придется теоретической стоимостью заграничного газа.

Последний пункт убивает рациональность использования автомобилей на водороде. Сеть электрозаправок в этом плане существенно выигрывает. Даже в России число точек подзарядки медленно, но верно растет. По разным данным к концу 2020 года их было от 200 до 300-400 .

Перспективы развития

Однако не все так печально в области развития водородного транспорта в мире. По данным портала H2stations.org, количество специализированных заправок к концу 2019 года достигло 434 штук.

В текущем году информации о новых открытых точках пока не возникало. Но и этот показатель говорит о том, что за последние пять лет инфраструктура выросла в объеме практически в два раза.

В России Минэнерго разработала «дорожную карту» по развитию водородной отрасли до 2024 года. Пока в планах только производство, экспорт топлива и испытание пилотных установок на АЭС. Как альтернатива — развитие железнодорожного транспорта в стране на водороде, в ближайшие годы тоже экспериментально.

И если верить данным исследовательской фирмы Bloomberg NEF , через 30 лет доля водорода на рынке энерготоплива будет составлять 24 % от общего числа , а цена прогнозируемо снизится до уровня стоимости газа. До этого события транспорт на водороде не конкурент для электромобилей.

Электротранспорт против водородного: существует ли противостояние на самом деле

Такое противостояние действительно есть, но оно находится далеко от реальных дорог и дилерских центров. Волна разговоров в стиле «электрон против протона» поднялась после возникновения на автомобильном рынке американской компании Nikola Motor. Ее владелец Тревор Милтон сделал ставку на производство сначала электрогрузовиков, а затем и тягачей на водороде. Но закончилась эта история печально .

Но если отвлечься на минутку от маркетинговых битв и задуматься, был ли конкурентоспособен бизнес Милтона на самом деле еще до того, как вскрылся обман? Агентство Bloomberg NEF скептически относится к перспективам H2 во всем коммерческом транспортном секторе.

В докладе агентства говорится, что возобновляемый водород, вероятно, прежде всего будет использоваться для тяжелых грузовиков и морских судов . При этом говорить об окупаемости технологии, к примеру, для водородных трейлеров можно только с 2031 года.

Эксперты компании предполагают, что в нише легковых автомобилей и автобусов в первую очередь будет использоваться электропривод, поскольку это будет более экономичным вариантом.

Сравнивать экологичность нулевого выброса электромобиля и водяной пар машины на водородном топливе нет особого смысла. Всегда найдутся физики и технологи, способные подсчитать затраты на появление этих транспортных средств.

Зачастую вывод такой: не очень уж это безобидное с точки зрения загрязнения среды дело. Насколько он реалистичен — покажет лишь время. Ну а пока противостояние «электричек» и «водорода» в СМИ и на информационных порталах в самом разгаре.

Кстати, следить за последними событиями в мире электротранспорта можно на не только на нашем сайте , но и на Telegram-канале .

Автомобиль на водороде. Пора ли прощаться с бензином?

Материал посвящен использованию водорода в автомобилях.

Действительно, в сравнении с бензином водород — одна сплошная проблема: его очень трудно хранить и непросто получать, он взрывоопасен, а водородные автомобили в разы дороже бензиновых. Но при этом водород считается наиболее перспективным видом альтернативного топлива для транспорта. К тому же, на производство водородных автомобилей инвесторы готовы тратить многомиллиардные инвестиции.

Приговор бензину уже подписан

Согласно последнему отчету BP Statistical Review of World Energy 2018, мировые разведанные запасы нефти составляют 1,696 млрд баррелей, чего при сохранении текущего уровня потребления хватит лет на пятьдесят. Неразведанные запасы нефти, предположительно, дадут нам еще полвека углеводородной энергетики, но и стоимость ее добычи может оказаться такой, что нефть попросту станет невыгодна в сравнении с другими источниками энергии. Когда месторождения с удобной добычей истощатся, цена на сырье автоматически пойдет вверх: если сейчас стоимость добычи барреля в России некоторыми оценивается в 2-3 доллара (по альтернативным оценкам, в 18 долларов), то для сланцевой нефти это уже 30-50 долларов. А впереди у человечества реальная перспектива перейти на добычу шельфовой и арктической нефти, цена которой будет еще выше.

Всплеск интереса к электротранспорту в 70-х годах XX века возник как раз на фоне скачкообразного роста цен на нефть из-за политического кризиса — недостатка в сырье не было, но четырехкратный рост цен мгновенно сделал бензиновые автомобили и нефтяную энергетику роскошью.

Читайте также  У нового генератора не идет зарядка ваз 2105

А еще на пути бензиновых авто встали более спорные препятствия — забота об экологии в городах и странах, где автомобильный выхлоп стал проблемой. Из-за этого, например, Германия приняла резолюцию о запрете производства автомобилей с ДВС с 2030 года. Франция и Великобритания обещают отказаться от углеводородного топлива до 2040 года. Нидерланды — до 2030 года. Норвегия — до 2025 года. Даже Индия и Китай рассчитывают запретить продажи дизельных и бензиновых авто с 2030 года. Париж, Мадрид, Афины и Мексика запретят к использованию дизельные машины с 2025 года.

Сжигание водорода в ДВС

Сжигание водорода в обычном двигателе внутреннего сгорания кажется самым простым и логичным способом применения газа, ведь водород легко воспламеняется и сгорает без остатка. Однако из-за разницы в свойствах бензина и водорода перевести ДВС на новый вид топлива оказалось не так-то просто. Сложности возникли с долгосрочной эксплуатацией движков: водород вызывал перегрев клапанов, поршневой группы и масла, из-за втрое большей, чем у бензина, теплоты сгорания (141 МДж/кг против 44 МДж/кг). Водород неплохо показывал себя на низких оборотах движка, но при росте нагрузки возникала детонация. Возможным решением проблемы была замена водорода на бензиново-водородную смесь, концентрация газа в которой динамически уменьшалась по мере роста оборотов двигателя.

Двухтопливная BMW Hydrogen 7 в кузове E65 сжигает водород в ДВС вместо бензина

Источник: Sachi Gahan / Flickr

Одним из немногих серийных автомобилей, где водород сжигался в ДВС подобно другому топливу, стал BMW Hydrogen 7, вышедший всего в 100 экземплярах в 2006–2008 годах. Модифицированный шестилитровый ДВС V12 работал на бензине или водороде, переключение между видами топлива происходило автоматически.

Несмотря на успешное решение проблемы перегрева клапанов, на этом проекте все равно поставили крест. Во-первых, при сжигании водорода мощность двигателя падала примерно на 20% — с 260 л. с. на бензине до 228 л. с. Во-вторых, 8 кг водорода хватало всего на 200 км пробега, что в разы меньше, чем в случае с дизельными элементами. В-третьих, Hydrogen 7 появился слишком рано — когда «зеленые» автомобили еще не были так актуальны. В-четвертых, ходили упорные слухи, что Агентство по охране окружающей среды США не разрешило называть Hydrogen 7 автомобилем без вредного выхлопа — из-за особенностей работы ДВС, частицы моторного масла попадали в камеру сгорания и там воспламенялись вместе с водородом.

Mazda RX-8 Hydrogen RE — тот случай, когда водород загубил всю динамику роторного двигателя. Источник: Mazda

Еще раньше, в 2003 году, была представлена двухтопливная Mazda RX-8 Hydrogen RE, добравшаяся до заказчиков только к 2007 году. При переходе на водород от мощности легендарного роторного RX-8 не оставалось и следа — мощность падала с 206 до 107 л. с., а максимальная скорость — до 170 км/ч.

BMW Hydrogen 7 и Mazda RX-8 Hydrogen RE были лебединой песней водородных ДВС: к моменту появления этих автомобилей стало окончательно ясно, что куда эффективней использовать водород в давно известных топливных элементах, чем просто жечь.

Топливные элементы в автомобилях

Первым успешным экспериментом по созданию транспортного средства на водородном топливном элементе можно считать трактор Гарри Карла, построенный в 1959 году. Правда, замена дизеля на топливный элемент снизила мощность трактора до 20 л. с.

В последние полвека водородный транспорт выпускался в штучных экземплярах. Например, в 2001 году в США появился автобус Generation II, водород для которого производился из метанола. Топливные элементы создавали мощность до 100 кВт, то есть около 136 л. с. В том же году российский ВАЗ представил «Ниву» на водородных элементах, известную под именем «Антэл-1». Электродвигатель выдавал мощность до 25 кВт (34 л. с.), разгонял авто максимум до 85 км/ч и на одной заправке работал 200 км. Единственный произведенный автомобиль остался «лабораторией на колесах».

Российский автомобиль на водородных топливных элементах — в то время технологии ушли дальше дизайна. Источник: «АвтоВАЗ»

В 2013 году Toyota встряхнула автомобильный мир, представив модель Mirai на водородных топливных элементах. Уникальность ситуации была в том, что Toyota Mirai был не концепт-каром, а готовым к серийному производству автомобилем, продажи которого начались уже год спустя. В отличие от электромобилей на аккумуляторах, Mirai сама вырабатывала электричество для себя.

Toyota Mirai. Источник: Toyota

Электродвигатель переднеприводной Mirai имеет максимальную мощность 154 л. с., что немного для современного электромобиля, но весьма неплохо в сравнении с водородными авто прошлого. Теоретический запас хода на 5 кг водорода составляет 500 км, фактический — около 350 км. Tesla Model S по паспорту может пройти 540 км. Вот только на заправку полного бака водорода уходит 3 минуты, а батарея Tesla заряжается до 100% за 75 минут на станциях Tesla Supercharger и до 30 часов от обычной розетки на 220 В.

Постоянный ток из 370 водородных топливных элементов Mirai преобразуется в переменный, а напряжение увеличивается до 650 В. Максимальная скорость машины достигает 175 км/ч — немного в сравнении с углеводородным топливом, но более чем достаточно для повседневной езды. Для запаса энергии используется никель-металл-гидридный аккумулятор на 21 кВт∙ч, в который передаётся избыток от топливных элементов и энергия рекуперативного торможения. Учитывая японские реалии, при которых населённые пункты могут в любой момент пострадать от землетрясения, в багажнике Mirai 2016-го модельного года установлен разъем CHAdeMO, через который можно организовать электроснабжение небольшого частного дома, что делает автомобиль генератором на колёсах с предельной ёмкостью 150 кВт∙ч.

Кстати, всего за несколько лет Toyota удалось значительно уменьшить массу генератора: если в начале века в прототипах он весил 108 кг и выдавал 122 л. с., то в Mirai топливный элемент вдвое компактней (объем 37 литров) и весит 56 кг. Справедливо будет прибавить к этому 87 кг топливных баков.

Для сравнения, популярный современный турбомотор Volkswagen 1.4 TSI схожей с Mirai мощностью 140–160 л.с. славится своей «лёгкостью» благодаря алюминиевой конструкции — он весит 106 кг плюс 38–45 кг бензина в баке. Кстати, батарея Tesla Model S весит 540 кг!

За 4 км пробега Mirai вырабатывает только 240 мл дистиллированной, относительно безопасной для питья воды — энтузиасты, пробовавшие «выхлоп» Mirai, сообщали только о лёгком привкусе пластика.

Пить воду, слитую из Mirai, безопасно, хотя сперва зрелище шокирует

В Toyota Mirai установлено сразу два бака для водорода на 60 и 62 литра, в сумме вмещающих 5 кг водорода под давлением 700 атмосфер. Toyota разрабатывает и производит водородные баки самостоятельно вот уже 18 лет. Бак Mirai сделан из нескольких слоёв пластика с углеволокном и стеклотканью. Использование таких материалов, во-первых, повысило стойкость хранилищ к деформации и пробитию, а, во-вторых, решило проблему наводораживания металла, из-за которого стальные баки теряли свои свойства, гибкость и покрывались микротрещинами.

Строение Toyota Mirai. Спереди расположен электродвигатель, топливный элемент спрятан под водительским сидением, а под задним рядом и в багажнике установлены баки и аккумулятор. Источник: Toyota

Каковы перспективы?

По оценкам Bloomberg, к 2040 году автомобили будут потреблять 1900 тераватт-час вместо 13 млн баррелей в сутки, то есть 8% от спроса на электричество по состоянию на 2015 год. 8% — пустяк, если учесть, что сейчас до 70% добываемой в мире нефти уходит на производство топлива для транспорта.

Перспективы рынка аккумуляторных электромобилей куда более явные и впечатляющие, чем в случае с водородными топливными ячейками. В 2017 году рынок электромобилей составлял 17,4 млрд долларов, в то время как водородный автомобильный рынок оценивался в 2 млрд долларов. Несмотря на такую разницу, инвесторы продолжают интересоваться водородной энергетикой и финансировать новые разработки.

Примером тому является созданный в 2017 году «Водородный совет» (Hydrogen Council), включающий 39 крупные компании, таких как Audi, BMW, Honda, Toyota, Daimler, GM, Hyundai. Его целью является исследование и разработка новых водородных технологий и их последующее внедрение в нашу жизнь.

Ищем доброту внутри водородомобиля Toyota Mirai

Седан Mirai ― примерно десятый тойотовский водородомобиль (конкуренты, например, из концерна Daimler их построили не меньше), но первый, покупать который должны тысячами уже в следующем году. За первый месяц продаж в Японии собрано 1500 заявок.

Дизайн седана Mirai заставляет высказываться даже отъявленных молчунов. Но в отличие от Приуса, которого уже ждут сотни тысяч реальных покупателей, для этого водородомобиля дизайн, даже несмотря на формальное начало продаж, дело не десятое ― сотое. Потому что Mirai как ракета-носитель ― служит для выведения полезного груза в космос, читай водородных технологий ― в будущее («Mirai» по-японски), где ими будут пользоваться не сотни и тысячи, а, как и Приусами, сотни тысяч. А до этого ещё ― как до Луны.

Будущее непредсказуемо, но к нему можно подготовиться ― гласит тойотовская презентация автомобилей на топливных элементах. Когда лет пять назад на одном из мотор-шоу я спрашивал инженеров разных компаний, какие из альтернативных источников энергии самые перспективные, они отвечали: этого не знает никто. Поэтому, готовясь к будущему, все развивают всё: гибриды, электромобили ― и водородные технологии. Этой весной в Женеве я повторил опрос ― с тем же результатом. Но в случае с Тойотой очевидно: долгосрочная ставка ― именно на водород. Верим, говорят, что в будущем Н 2 станет основным источником энергии.

Если бы не сенсорная консоль с отдельным климатическим дисплеем, внутри Mirai можно было бы спутать с Приусом: «обёрнутая» передняя панель, приборы в центре, тот же руль и похожие жёсткие кресла. Привычно тяну к себе и вниз крошку-селектор ― и почти бесшумно выкатываюсь на Fuji Speedway. Вспомните, как наш главред описывал звуковое наполнение водородного Мерседеса В-класса: подвывание электромотора, журчание планетарной передачи, щелчки при переключении режимов силовой установки. Здесь под креслом, где водородный генератор, тоже что-то шипит и журчит, но в целом Mirai примерно вдвое тише негромкого Приуса.

Динамика бодрее приусиной: всё-таки 335 Н•м и 155 сил — это больше, чем у гибридных ДВС и электромотора вместе взятых. Паспортное преимущество водородомобиля ― 9,6 с до сотни против 10,6. Управлять тягой легко и просто, причём она не исчезает и после 120 км/ч. Но главное ездовое отличие ― в поворотах: Mirai заезжает в них, как Prius, гружённый до полной массы. Усилие на руле и реакции сносные, но лишние 500 кг (из общих 1850) ты ощущаешь, будто свои. Крены больше, подвеска размягчённее. Важно, что Mirai построен не из кубиков TNGA, как новый Prius, а на основе однообъёмника Prius v прежнего поколения.

Революционного в устройстве силовой установки «Будущего» нет ничего, но в сравнении с той, что в 2008 году появилась на водородном Хайлендере по имени FCHV-adv, она усовершенствована во всём. Электрохимический генератор, где водород соединяется с кислородом, выделяя электричество и водяной пар, стал вдвое компактнее и легче, настолько же выросла его удельная отдача (с 0,83 кВт/кг до 2,0). Количество водородных баллонов сократилось с четырёх до двух, их вместимость повысилась. Но главное ― топливная система седана Mirai, по уверениям Тойоты, стоит в 20 раз дешевле прежней (подробнее ― в «Технике»)!

Хотя цена без налогов в 60 тысяч долларов или евро за водородный, но, по сути, Prius ― это всё ещё перебор. Тем более, по опыту коллег, которым посчастливилось вместо двух кругов по треку поездить по дорогам Германии, реальный расход водорода почти вдвое выше паспортных 0,69 кг/100 км ― 1,3 кг на сотню. Это даже больше тех 1,08–1,18 кг/100 км, что Петровский показал за рулём старого В-класса. К слову, этой весной в Женеве, где Mirai справлял европейскую премьеру, мы обсуждали тойотовский водородный седан с «электромобильным» начальником Мерседеса Харальдом Крёгером.

Читайте также  Фиат линеа ремень генератора

«Такая же по технике машина, ― имея в виду тот самый B-класс F-Cell, говорит Крёгер, ― была у нас ещё четыре года назад. Мы с продажами повременили, Toyota ― нет. Это их заявление, мол, мы работаем над топливными элементами, и посмотрите, чего добились. Уверен, что, как и остальные, они ещё очень далеки от целевой себестоимости водородной технологии и продают Mirai в убыток, причём огромный. Однако при тираже в несколько сотен общие затраты частично компенсируются имиджевой прибылью и потому разумны. Мы такой конкуренции рады: чем больше игроков в этом направлении, тем вероятнее результат!»

Проблемы, стоящие на пути распространения водородного транспорта, с тех пор, как в начале века мы читали про Ниву Антэл, никуда не делись. Добывать водород экологичным способом (а не из природного газа или иного ископаемого топлива с выделением «парникового» CO 2 ) по-прежнему энергозатратно, то есть дорого, а заправочной инфраструктуры, считайте, нет ― меньше тысячи заправок по всему миру. Однако надежда на их решение есть, причём, судя по энтузиазму тойотовских водородофилов, она и не надежда даже, а ― вера.

Во-первых, почему бы не использовать тот водород, что уже и так производится? По подсчётам японцев, в мире его ежегодно выделяется столько, что хватит на питание 250 миллионов седанов Mirai. А мерседесовцы прикинули, что даже если отделить только побочный, «мусорный» водород от всякого рода химических производств, его хватит на год 750 тысячам водородомобилям. Есть и совсем безумные проекты вроде австралийского CarbonNet, куда затесалась Toyota. Там, говорят, полно бурого угля, который из-за своей легковоспламеняемости нетранспортабелен. Нет транспорта ― нет продаж, а значит, его очень дёшево жечь на месте.

Особенность этой углесжигательной добычи H 2 ― в отлавливании CO 2 для… последующей его закачки в подземные, а точнее, подводные ёмкости! По расчётам, в год так удастся прятать от одного до пяти миллионов тонн углекислого газа, а то и больше. Водород, в свою очередь, планируется сжижать при температуре −253 ºC и переправлять в Японию на танкерах. А дальше уже привычная цепочка: грузовик, компрессор, колонка. И ― здравствуй, Mirai! В смысле будущее. В Тойоте уверяют, что, несмотря на всю эту переплетённую со складированием логистику, потребительская цена килограмма водорода в 2025 году окажется явно ниже нынешних $8 (или 9,5 евро в Германии).

Чтобы развеять «инфраструктурные» сомнения, японцы приводят в пример создание американских хайвеев, когда за тринадцать лет между штатами было проложено 66 000 км дорог. И американскую же бензоструктуру: в 1901 году в Техасе нашли нефть, через шесть лет открыли первую заправку, а в 1929-м их в Америке было уже 300 тысяч! Всё, мол, возможно ― и инфраструктура с нуля за двадцать лет тоже. С одной стороны ― мы слышим об этом годами. Когда АвтоВАЗ представил Антэл, над топливными элементами работали чуть ли не все автопроизводители мира. И где результат? Двести лизинговых седанов Honda FСX Clarity за три года?

С другой стороны ― по тойотовским презентациям пятилетней давности видно: всё идёт по плану. Собирались в двадцать раз снизить стоимость топливной установки 2008 года ― снизили. Намечали старт публичных продаж автомобиля на топливных элементах на 2015-й ― сделали. Инфраструктура отстаёт ― вместо ста станций в Японии к марту открыта только 81. Но к Олимпиаде 2020 года Токио потратит на «водородную» поддержку 360 млн евро, частично оплачивая постройку заправок (1–3 млн евро каждая), частично сами автомобили. Вдобавок треть операционных расходов каждой станции (85 тысяч евро) будут сообща компенсировать Toyota, Honda и Nissan.

На сегодня по тойотовской классификации водородомобили преодолели две стадии развития из четырёх. Впереди ― десятилетний период так называемой ранней коммерциализации, посвящённый, прежде всего, строительству заправок. Точка перегиба, когда затраты на станции и сам водород достигнут целевых, а заправочный бизнес начнёт зарабатывать, намечена на 2025 год. В цифрах ― это два миллиона водородомобилей на дорогах Японии и 1000 станций в 47 префектурах. После этого ожидается «полная коммерциализация», и кривая распространения автомобилей на топливных элементах пойдёт в гору.

Планы ― грандиозные. Но таким образом Mirai превратится из эмбриона в автомобиль в лучшем случае через десять лет, а Tesla Model S есть уже сейчас. Зачем заморачиваться с добычей, перевозкой, хранением и переработкой водорода, если можно отсечь «лишнее» ― и ездить на электромобилях? Тойтовцы парируют временем зарядки (три минуты против нескольких часов), низким запасом хода электромобилей, ценой батарей (Mirai-то обходится старой никель-металлгидридной) и опять-таки необходимостью строительства зарядных станций. Плюс, говорят, если электричество и водород получать из природного газа, то КПД полного цикла преобразований у водородомобиля выше: 36% против 24.

Я снова вспоминаю мерседесовца Крёгера, который называет себя фанатом электромобилей. Он говорит, что за последние пять лет цена батарей снизилась примерно на треть, а за следующие десять упадёт ещё на 30–40%. Развиваются в электромобильном направлении новые литий-воздушные (Li-air) и литий-серные (Li-S) аккумуляторы. Ищутся иные типы. Химия, поясняет, сильно опережает возможности производства, которому предстоит решить, как выпустить «идеальную» батарею за разумные деньги и сохранить её характеристики после сотен циклов зарядки-разрядки. Но десяти лет, уверен Харальд, для прорыва достаточно.

В общем, победы какой-то одной технологии не предвидится и через десять лет, будет борьба. А к 2050 году, по прогнозам, население Земли увеличится до 9,6 млрд человек (сейчас около 7,3 млрд), причём 70% из них будут проживать в городах. Бороться придётся за чистый воздух. К этому сроку Toyota планирует сократить выбросы всего своего модельного ряда на 90%, полностью отказавшись от автомобилей с ДВС в качестве основного источника энергии. В этом смысле Mirai ― доброе дело. Я нажимаю кнопку Н 2 0 слева от руля ― и сливаю свежесинтезированную пресную воду. С ней, кстати, нас тоже ждёт напряжёнка.

Водородные автомобили

Двигатели внутреннего сгорания являются далеко не самым эффективным средством для приведения автомобиля в движение, поскольку ⅔ энергии топлива двигатель тратит на трение и нагрев металлических деталей с последующим выбросом отработавших токсичных газов в атмосферу.

К счастью, стремительно иссякающие запасы углеводородов заставили ученых искать альтернативные источники энергии и, вместе с этим, более эффективные средства использования этих источников в транспортных средствах.

Помимо энергии Солнца, ветра и волн есть источник, запасы которого не ограничены во Вселенной. Это водород. Он присутствует во всем, что нас окружает — в воздухе, воде, даже в нефти. Соединяясь с другими элементами, он выделяет энергию. А это значит, что его можно использовать в автомобиле.

Когда впервые стали использовать водород в автомобиле

Впервые возможности водорода в качестве топлива использовал в двигателе внутреннего сгорания Франсуа Исаак де Ривас (François Isaac de Rivaz) в 1806 году. Водород он получал с помощью электролиза воды.

Двигатель был похож на современные моторы с шатунно поршневым механизмом и искровым зажиганием, которое поджигало смесь водорода с кислородом в камере сгорания. Спустя несколько лет изобретатель установил двигатель на четырехколесную повозку, которой удалось проехать несколько сотен метров, пока хватило запасов водорода в баллоне.

С тех пор изобретатели неоднократно пытались использовать водород в качестве топлива в ДВС. Однако столкнулись с несколькими серьезными проблемами. Процесс добычи водорода был довольно энергоемким и затратным по времени, а для его безопасного хранения не было подходящих емкостей.

Откуда берут водород

Казалось бы, ученые и инженеры нашли неограниченный источник энергии. Но все оказалось не так просто. Дело в том, что водород самый любвеобильный элемент — он не существует в чистом виде в природе. Этот элемент стремится соединиться со всем, что встречается ему на пути, чтобы не расставаться никогда. Для синтеза водорода можно использовать несколько способов:

  • паровая конверсия метана и природного газа;
  • газификация угля;
  • электролиз воды;
  • пиролиз;
  • биотехнологии.

Наиболее безвредным способом производства водорода, хотя и наиболее дорогим, является электролиз — получение водорода из воды с использованием электрического тока. В результате пропускания электрического тока с напряжением 1,8В через раствор питьевой соды (NaHCO3), на электродах выделяется кислород и водород, который затем требуется поместить в специальный резервуар. Здесь не все так просто.

Для превращения водорода в жидкое состояние и уменьшения в объеме в 850 раз, водород необходимо охладить до температуры –259°C под давлением до 700 атмосфер. Емкости для его хранения должны быть невероятно прочными, чтобы поддерживать такое давление.

Особенности водорода как топлива для двигателя

Водород в силу легкой воспламеняемости может использоваться в традиционных двигателях внутреннего сгорания, однако в таком случае его расход в десятки раз превышает расход бензина при схожем КПД.

Кроме того, водород имеет более разрушительное действие на элементы двигателя и выхлопную систему и для его хранения требуются емкости, которые будут занимать полезное пространство в салоне и багажнике. У таких двигателей, работающих на водороде, практически нет перспектив, в отличие от принципиально другого способа использования водорода в качестве топлива в топливных ячейках электромобиля.

Как устроен электромобиль на топливных элементах

Водородный автомобиль или FCEV – fuel cell electric vehicles — это средство передвижения, которое использует химическую реакцию соединения водорода с кислородом в топливных ячейках для вырабатывания электрической энергии, которая приводит колеса автомобиля в движение. Побочным результатом этой реакции является выхлоп. А из уроков химии все мы знаем, что это вода — H2O.

То есть, фактически любой водородный автомобиль — это электромобиль. Но с некоторыми интересными отличиями. И это не только безвредный выхлоп.

Водородный электромобиль использует электрическую энергию не от атомных или тепловых электростанций, а из водорода, закачанного в специальные баллоны под давлением 700 атм. Так, например, в современном водородомобиле Toyota Mirai используется целых три баллона, способных размещать всего 5,6 кг водорода. Для их наполнения требуется около 5 минут на водородной заправке.

Также как аккумулятор электрокара преобразует химическую энергию жидкости в батарее в электрическую, в водородном двигателе первоначальная химическая энергия происходит в так называемых топливных элементах, размещенных в специальном устройстве — топливном генераторе. Таких ячеек насчитывается около 330 штук.

Принцип работы водородного двигателя

В топливных элементах происходит процесс, обратный электролизу. Частицы водорода, расщепленные на угольных электродах, покрытых платиновым катализатором, проходят через специальные мембраны, где смешиваются с частицами кислорода. В процессе соединения они создают движение заряженных частиц — электрический ток, накапливаемый в аккумуляторе. Ток раскручивает электромотор, который, в свою очередь, передает крутящий момент колесам. В результате реакции образуется водяной пар, спускаемый под днищем автомобиля.

Toyota заявляет, что одна такая ячейка гарантированно будет работать на протяжении 250 000 км. А баки для хранения водорода не требуют замены в принципе. Их стенки выполнены из сверхпрочного волокна и выдерживают выстрелы из крупнокалиберного оружия.

Источник: nevinka-info.ru

Путешествуй самостоятельно