Упрощенная схема генератора переменного тока
- ИНФОФИЗ — мой мир.
- Как сказал.
- Вопросы к экзамену
- Урок 43-3 Устройство и принцип работы генератора переменного тока
- Как устроен генератор переменного тока — назначение и принцип действия
- Превращение механической энергии в электрическую
- Устройство и конструкция генератора переменного тока
- Схема генератора переменного тока
- Классификация и виды агрегатов
- По принципу работы
- Асинхронный
- Синхронный
- По типу топлива двигателя
- Газовый генератор
- Дизельный генератор
- Бензогенератор
- Схема генератора автомобиля
- Калькулятор перевода силы тока в мощность
- Устройство генератора
- Принцип работы генератора авто
- Схема подключения генератора на ВАЗ 2107
- Схема зарядки ВАЗ с инжекторными двигателями
- Проверка работы генератора
- Элементарная проверка лампочкой и мультиметром
- Принцип работы и устройство синхронного генератора переменного тока
- Устройство
- Принцип работы
- Регулирование частоты
- Регулирование ЭДС
- Применение
- Генератор тока.
- Генераторы постоянного тока.
- Генераторы переменного тока.
- Генератор переменного тока. Трансформатор
- Урок 16. Физика 11 класс ФГОС
- В данный момент вы не можете посмотреть или раздать видеоурок ученикам
- Получите невероятные возможности
- Конспект урока «Генератор переменного тока. Трансформатор»
ИНФОФИЗ — мой мир.
Весь мир в твоих руках — все будет так, как ты захочешь
Весь мир в твоих руках — все будет так, как ты захочешь
- Главная
- Мир физики
- Физика в формулах
- Теоретические сведения
- Физический юмор
- Физика вокруг нас
- Физика студентам
- Для рефератов
- Экзамены
- Лекции по физике
- Естествознание
- Мир астрономии
- Солнечная система
- Космонавтика
- Новости астрономии
- Лекции по астрономии
- Законы и формулы — кратко
- Мир психологии
- Физика и психология
- Психологическая разгрузка
- Воспитание и педагогика
- Новости психологии и педагогики
- Есть что почитать
- Мир технологий
- World Wide Web
- Информатика для студентов
- 1 курс
- 2 курс
- Программное обеспечение компьютерных сетей
- Мои лекции
- Для студентов ДО
- Методические материалы
- Физика школьникам
- Физика студентам
- Астрономия
- Информатика
- Индивидуальный проект
- Арх ЭВМ и ВС
- Методические материалы
- Медиа-файлы
- Тестирование
- ПОКС
Как сказал.
Наблюдай внимательно за природой, и ты будешь всё понимать намного лучше.
Альберт Эйнштейн
Вопросы к экзамену
Для всех групп технического профиля
Список лекций по физике за 1,2 семестр
Урок 43-3 Устройство и принцип работы генератора переменного тока
- » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать
Рассмотрим замкнутый контур (рамку) площадью S, помещенный в однородное магнитное поле, индукция которого равна B. Контур равномерно вращается вокруг оси OO’ с угловой скоростью ω.
Магнитный поток, пронизывающий контур, определяется формулой Ф = BS cosΔφ, где Δφ — угол между вектором нормали n к плоскости контура и вектором В. Рамка вращается внутри магнита с частотой v, и за время t совершает N = vt оборотов. За оборот рамка поворачивается на угол 2π рад. Угол на который поворачивается рамка за время t: Δφ = 2π vt = ωt, тогда изменение магнитного потока ΔФ = BS cos Δφ = BS cos ωt .
В замкнутом контуре возникает э.д.с. индукции, которая по закону электромагнитной индукции равна скорости изменения магнитного потока .
Тогда получим мгновенное значение э.д.с.
Следовательно э.д.с. индукции, возникающая в замкнутом контуре, при его равномерном вращении в однородном магнитном поле меняется со временем по закону синуса. Э.д.с. индукции максимальна при sin ωt = 1, т.е. α = ωt = π/2
Величина ε = ωBS – называется амплитудным значением э.д.с. индукции.
Если такой контур замкнуть на внешнюю цепь, то по цепи пойдет ток, сила и направление которого изменяются. Такая рамка, вращающаяся в магнитном поле является простейшимгенератором переменного тока.
В нашей стране используется переменный ток частотой 50 Гц (в США – 60 Гц). Такой ток вырабатывается генераторами.
Генераторы электрического тока – это устройства для преобразования различных видов энергии – механической, химической, тепловой, световой и др. – в электрическую.
Работа генератора переменного тока основана на явлении электромагнитной индукции.
В настоящее время имеется много различных типов генераторов. Но все они состоят из одних и тех нее основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС — электродвижущая сила (в рассмотренной модели генератора это вращающаяся рамка).
Неподвижную часть генератора называют статором, а подвижную – ротором.
Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока () через каждый виток.
В изображенной на рисунке модели генератора вращается проволочная рамка, которая является ротором. Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной. К концам обмотки ротора присоединены контактные кольца. Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.
Модель генератора переменного тока.
Промышленные генераторы имеют намного большие размеры, для увеличения напряжения, снимаемого с клемм генератора, на рамки наматывают не один, а много витков. Во всех промышленных генераторах переменного тока витки, в которых индуцируется переменный ток, устанавливают неподвижно, а вращается магнитная система. Если ротор вращать с помощью внешней силы, то вместе с ротором будет вращаться и магнитное поле, создаваемое им, при этом в проводниках статора будет индуцироваться э.д.с.
Принцип действия генератора переменного тока следующий. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока магнитной индукции.
В больших промышленных генераторах вращается именно электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.
Структурная схема генератора переменного тока.
Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том левее валу (В настоящее время постоянный ток в обмотку ротора чаще всего подают из статорной обмотки этого же генератора через выпрямитель).
В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.
Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.
Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.
Как устроен генератор переменного тока — назначение и принцип действия
Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.
Превращение механической энергии в электрическую
Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.
Устройство и конструкция генератора переменного тока
Стандартный электрогенератор имеет следующие компоненты:
- Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
- Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
- Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
- Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.
В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:
- Ротор – подвижная цельная деталь из железа;
- Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.
Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:
- С подвижным якорем и статическим магнитным полем.
- С неподвижным якорем и вращающимся магнитным полем.
В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.
Схема генератора переменного тока
Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.
Классификация и виды агрегатов
Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.
По принципу работы
Разделяют асинхронные и синхронные генераторы переменного тока.
Асинхронный
У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.
Синхронный
Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.
По типу топлива двигателя
Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.
Газовый генератор
В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:
- Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
- Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
- Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
- Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.
Дизельный генератор
Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:
- Относительная дешевизна топлива;
- Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
- Высокий уровень противопожарной безопасности;
- В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
- Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.
Бензогенератор
Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:
- Малые габариты при высокой мощности;
- Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
- В случае перегрузки генератора автоматически срабатывает защита;
- Просты в обслуживании и ремонте;
- Во время работы не издают много шума;
- Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.
Схема генератора автомобиля
- 112 4 106k
- 274 1 284k
Калькулятор перевода силы тока в мощность
Перевести сколько ампер у квт онлайн. Калькулятор перевода силы тока ампер в мощность ватт
Самая основная функция генератора – зарядка батареи аккумулятора и питание электрического оборудования двигателя.
Генератор – механизм, который превращает механическую энергию в электрическую. Генератор имеет вал, на который насажен шкив, через который и получает вращения от коленчатого вала двигателя.
- Аккумуляторная батарея
- Выход генератора «+»
- Выключатель зажигания
- Лампа-индикатор исправности генератора
- Помехоподавляющий конденсатор
- Положительные диоды силового выпрямителя
- Отрицательные диоды силового выпрямителя
- «Масса» генератора
- Диоды обмотки возбуждения
- Обмотки трех фаз статора
- Питание обмотки возбуждения, опорное напряжение для регулятора напряжения
- Обмотка возбуждения (ротор)
- Регулятор напряжения
Автомобильный генератор используют для питания электропотребителей, таких как: система зажигания, бортовой компьютер, автомобильная светотехника, система диагностики, а также есть возможность заряжать автомобильный аккумулятор. Мощность генератора легкового автомобиля составляет приблизительно 1 кВт. Автомобильные генераторы достаточно надежные в работе, потому что обеспечивают бесперебойную работу множеству приборов в автомобиле, а поэтому и требования к ним соответствующие.
Устройство генератора
Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.
Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щеткодержатель с регулятором напряжения.
Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.
Принцип работы генератора авто
Схема подключения генератора ВАЗ 2110-2115
Схема подключения генератора переменного тока включает такие составляющие:
- Аккумулятор.
- Генератор.
- Блок предохранителя.
- Ключ зажигания.
- Приборная панель.
- Выпрямительный блок и добавочные диоды.
Принцип работы достаточно простой, при включении зажигания плюс через замок зажигания идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.
Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.
Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.
Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.
Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.
Схема подключения генератора на ВАЗ 2107
Схема зарядки ВАЗ 2107 зависит от того, какой применяется тип генератора. Чтобы подзарядить аккумуляторную батарею на таких авто, как: ВАЗ-2107, ВАЗ-2104, ВАЗ-2105, которые стоят на карбюраторном двигателе, будет необходим генератор типа Г-222 или его аналог с максимальным током отдачи в 55А. В свою очередь автомобили ВАЗ-2107 у которых инжекторный двигатель используют генератор 5142.3771 или его прототип, который называется генератором повышенной энергии, с максимальным током отдачи 80-90А. Также можно устанавливать более мощные генераторы с током отдачи до 100А. Абсолютно во все виды генераторов переменного тока встраиваются выпрямительные блоки и регуляторы напряжения, они, как правило, изготовлены в одном корпусе со щетками либо съемные и крепятся на самом корпусе.
Схема зарядки ВАЗ 2107 имеет незначительные отличия в зависимости от года изготовления автомобиля. Самым главным отличием есть наличие или отсутствие контрольной лампы заряда, которая расположена на панели приборов, также способ ее подключения и наличие либо отсутствие вольтметра. Такие схемы в основном используются на карбюраторных автомобилях, тогда как на авто с инжекторными двигателями схема не меняется, она идентична с теми автомобилями, которые изготовлялись ранее.
Обозначения генераторных установок:
- “Плюс” силового выпрямителя: “+”, В, 30, В+, ВАТ.
- “Масса”: “-”, D-, 31, B-, M, E, GRD.
- Вывод обмотки возбуждения: Ш, 67, DF, F, EXC, E, FLD.
- Вывод для соединения с лампой контроля исправности: D, D+, 61, L, WL, IND.
- Вывод фазы:
, W, R, STА.
Схема генератора ВАЗ-2107 типа 37.3701
- Аккумуляторная батарея.
- Генератор.
- Регулятор напряжения.
- Монтажный блок.
- Выключатель зажигания.
- Вольтметр.
- Контрольная лампа заряда аккумуляторной батареи.
При включении зажигания плюс от замка идет к предохранителю № 10, а затем уже поступает на реле контрольной лампы заряда аккумуляторной батареи, потом идет к контакту и на вывод катушки. Второй вывод катушки взаимодействует с центральным выводом стартера, где соединяются все три обмотки. Если контакты реле замыкаются, то и контрольная лампа горит. При запуске двигателя генератор вырабатывает ток и на обмотках появляется переменное напряжение 7В. Через катушку реле проходит ток и якорь начинает притягиваться, при этом контакты размыкаются. Генератор № 15 через предохранитель № 9 пропускает ток. Аналогично через генератор напряжения щетки получает питание обмотка возбуждения.
Схема зарядки ВАЗ с инжекторными двигателями
Такая схема идентичная схемам на других моделях ВАЗов. Она отличается от предыдущих, способом возбуждения и контроля на исправность генератора. Он может быть осуществлен при помощи специальной контрольной лампы и вольтметра на панели приборов. Также через лампу заряда происходит первоначальное возбуждение генератора в момент начала работы. Во время работы генератор работает “анонимно”, то есть возбуждение идет напрямую с 30-го вывода.Когда включается зажигание, то питание через предохранитель №10 идет на лампу зарядки в панели приборов. Далее через монтажный блок поступает на 61-й вывод. Три дополнительные диода обеспечивают питание регулятору напряжения, а он в свою очередь передает его на обмотку возбуждения генератора. В этом случае контрольная лампа будет гореть. Именно в тот момент, когда генератор будет работать на обкладках выпрямительного моста напряжение будет гораздо выше, чем у аккумуляторной батареи. В этом случае контрольная лампа не будет гореть, потому что напряжение с ее стороны на дополнительных диодах будет ниже, чем со стороны статорной обмотки и диоды закроются. Если во время работы генератора контрольная лампа горит в пол накала, то это может означать, что пробиты дополнительные диоды.
Проверка работы генератора
Проверить работоспособность генератора можно несколькими способами применяя определенные методы, например: можно проверить напряжение отдачи генератора, падение напряжения на проводе, который соединяет токовый вывод генератора с аккумуляторной батареей или проверить регулируемое напряжение.
Для проверки будет необходим мультиметр, автомобильный аккумулятор и лампа с припаянными проводами, провода для подключения между генератором и аккумулятором, а еще можно взять дрель с подходящей головкой, так как возможно придется крутить ротор за гайку на шкиве.
Элементарная проверка лампочкой и мультиметром
Схема подключения: выходная клемма (В+) и ротор (D+). Лампу нужно подключить между основным выходом генератора В+ и контактом D+. После этого берем силовые провода и подключаем “минус” к минусовой клемме аккумулятора и к массе генератора, “плюс” соответственно к плюсу генератора и к выходу В+ генератора. Закрепляем на тиски и подключаем.
Включаем тестер в режим (DC) постоянного напряжения, цепляем один щуп на аккумулятор к “плюсу”, второй также, но к “минусу”. Далее, если все в рабочем состоянии, то должна загореться лампочка, напряжение в этом случае будет 12,4В. Затем берем дрель и начинаем крутить генератор, соответственно лампочка в этом момент перестанет гореть, а напряжение уже будет 14,9В. После чего добавляем нагрузку, берем галогенную лампу H4 и вешаем ее на клемму аккумулятора, она должна загореться. После чего в аналогичном порядке подключаем дрель и напряжение на вольтметре будет показывать уже 13,9В. В пассивном режиме аккумулятор под лампочкой дает 12,2В, а когда крутим дрелью, то 13,9В.
Схема проверки генератора
Строго не рекомендуется:
- Проводить проверку на работоспособность генератора путем короткого замыкания, то есть “на искру”.
- Допускать, чтобы генератор работал без включенных потребителей, также нежелательна работа при отключенном аккумуляторе.
- Соединение клеммы “30” (в некоторых случаях B+) с “массой” или клемму “67” (в некоторых случаях D+).
- Проводить сварочные работы кузова автомобиля при подключенных проводах генератора и аккумулятора.
Принцип работы и устройство синхронного генератора переменного тока
Электричество – единственный вид энергии, которую легко можно передать на большие расстояния, а затем преобразовать её в механическую, тепловую или превратить в световое излучение. Саму же электроэнергию также можно получить разными способами: химическим, тепловым, механическим, фотоэлектрическим и др. Но именно механический способ, который основан на применении генераторов, оказался самым эффективным. Среди этих источников электроэнергии широкое применение нашёл синхронный генератор переменного тока.
Практически вся электроэнергия, используемая в быту и на производстве, вырабатывается генераторами этого типа. Они заслуживают того, чтобы более подробно рассмотреть их устройство и разобраться в принципе работы этих удивительных синхронных машин.
Устройство
В конструкции синхронных генераторов используются две основные рабочие детали – вращающийся ротор и неподвижный статор. На валу ротора располагаются постоянные магниты либо обмотки возбуждения. Магниты имеют зубчатую форму, с противоположно направленными полюсами.
Бесщёточные генераторы.
Обмотки статора размещают таким образом, чтобы их сердечники совпадали с выступами магнитных полюсов ротора, или с сердечниками катушек ротора. Количество зубцов магнита, обычно, не превышает 6. При такой конструкции вырабатываемый ток снимается непосредственно с обмоток статоров. Другими словами, статор выступает в роли якоря.
В принципе, постоянные магниты можно расположить на статоре, а рабочие обмотки, в которых будет индуцироваться ЭДС, — на роторе. Работоспособность генератора от этого не изменится, однако потребуются кольца и щётки для снятия напряжения с обмоток якоря, а это, чаще всего, не рационально.
Схематическое изображение бесщеточного генератора без обмоток возбуждения изображено на рис. 1.
Рис. 1. Модель генератора с магнитным ротором
Пояснение:
- схема устройства;
- схема расположения магнитных полюсов на якоре. Здесь буквами NS обозначено коаксиальный магнит с полюсами, а литерой R – стальной магнитопровод ротора в виде когтеобразных наконечников.
- модель генератора в разрезе. Выводы фазных обмоток статора соединены «звездой».
Синхронные машины с индукторами.
Заметим, что постоянные магниты в качестве ротора используются в альтернаторах небольшой мощности. В мощных электрических машинах всегда применяются обмотки индуктора с независимым возбуждением. Независимым источником питания является маломощный генератор постоянного тока, смонтированный на валу синхронного двигателя.
Существуют конструкции синхронных генераторов малой и средней мощности, с самовозбуждающимися обмотками. Для возбуждения индуктора выпрямленный ток фазных обмоток подаётся через щётки на кольца, расположенные на валу статора. Строение такого альтернатора показано на рис. 2.
Рис. 2. Строение синхронного генератора средней мощности
Обратите внимание на наличие щёток, на которые подаётся питания от независимого источника.
По количеству фаз синхронные генераторы делятся на:
- однофазные;
- двухфазные;
- трёхфазные.
По конструкции ротора можно выделить генераторы с явновыраженными полюсами и с неявновыраженными. В неявнополюсном роторе отсутствуют выступы, а катушки провода якоря спрятаны в пазы статора.
По способу соединения фазных обмоток различают трёхфазные генераторы:
- соединённые по шестипроводной системе Тесла (не нашли практического применения);
- «звезда»;
- «треугольник»;
- сочетание шести обмоток, соединённых в виде одной «звезды» и «треугольника». Это соединение ещё называют «Славянка».
Самое распространённое соединение – «звезда» с нейтральным проводом.
Принцип работы
Рассмотрим принцип генерации тока на примере контурной рамки, помещённой между магнитными полюсами. (Рис. 3)
Рис. 3. Схема, объясняющая принцип работы генератора
Если заставить рамку вращаться (по направлению стрелок), то она будет пересекать магнитные силовые линии. При этом, по закону электромагнитной индукции, в рамке индуцируется электрический ток, который проявляется при подключении нагрузки к щёткам. Его направление можно определить по правилу буравчика. На схеме направление тока показано чёрными стрелками.
Обратите внимание на то, что на участках рамки ab и cd ток движется в противоположных направлениях. Эти направления меняются при переходе участков рамки от одного полюса к другому полюсу магнита. Если каждый вывод рамки подключить к отдельному кольцу (на рисунке они подключены к коллектору!), то на выходе мы получим переменный ток.
Величина тока пропорциональна скорости вращения ротора. Кроме того, переменный ток характеризуется ещё одним параметром – частотой. Эта величина напрямую зависит от частоты вращения вала.
Частота тока в электросетях строго соблюдается. В России и в ряде других стран она составляет 50 Гц, то есть 50 колебаний в секунду.
Этот параметр довольно легко вычислить из таких соображений: за один оборот рамки (или двухполюсного магнита) происходит одно изменение направления тока. Если вал синхронного генератора делает 1 оборот в секунду, то частота переменного тока составит 1 Гц. Для получения частоты 50 Гц необходимо обеспечить 50 оборотов статора в секунду или 3000 об./мин.
При возрастании числа полюсов заданная частота удерживается путём снижения скорости вращения статора. (обратно пропорциональная зависимость). Так, для четерёхполюсного статора (число полюсов в два раза больше) для поддержания частоты 50 Гц скорость вращения вала необходимо снизить в два раза. Соответственно если используется 6 полюсов, то частота вращения вала должна уменьшиться в три раза – до 1000 об./мин.
Заметим, что в некоторых странах, таких как США, Япония и др. существуют другие стандарты – 60 Гц, а переменный 400 Гц используется, например, в бортовой сети современных самолётов.
Регулирование частоты
Достигнуть требуемых параметров частоты можно 2 путями:
- Сконструировать генератор с определённым количеством полюсов электромагнитов.
- Обеспечить соответствующую расчётную частоту вращения вала.
Например, в тихоходных гидротурбинах, вращающихся со скоростью 150 об./мин. для регулирования частоты число полюсов синхронных генераторов увеличивают до 40. На дизельных электростанциях, при скоростях вращения 750 об./мин., оптимальное число полюсов – 8.
Регулирование ЭДС
В связи с изменениями параметров активных нагрузок возникает необходимость в выравнивании номинальных напряжений. Несмотря на то, что ЭДС индукции синхронного генератора связана со скоростью вращения ротора, однако, из-за требований по соблюдению стабильной частоты, этим способом нельзя изменять указанный параметр. Но параметры магнитной индукции можно изменить путём снижения или увеличения магнитного потока, который зависит от количества витков обмотки индуктора и величины тока возбуждения.
Регулирование осуществляется путём включения в цепь катушек возбуждения дополнительных реостатов, электронных схем или регулировкой тока генератора-возбудителя (Рис. 4). В случае использования альтернаторов с постоянными магнитами, в таких устройствах напряжение регулируется внешними стабилизаторами.
Рис. 4. Схема регулировки напряжения
Благодаря малому весу и отличным токовым характеристикам синхронные генераторы переменного тока нашли применение во всех современных автомобилях. Поскольку бортовая сеть авто использует постоянный ток, конструкции автомобильных генераторов оборудованы трехфазным выпрямителем. Для выпрямляемых переменных токов частота не имеет значения, а вот напряжение должно быть стабильно. Этого добиваются с помощью внешних электронных устройств. На рисунке 5 представлена электрическая схема подключения генератора к бортовой сети современного автомобиля.
Рис. 5. Схема подключения генератора к бортовой сети авто
Применение
У синхронных генераторов переменного тока есть одна важная особенность: они поддаются синхронизации с другими подобными электрическими машинами. При этом синхронные скорости и ЭДС параллельно включенных альтернаторов совпадают, а фазовый сдвиг равен нулю. Данное обстоятельство позволяет применять устройства в промышленной энергетике и подключать резервные генераторы при превышении номинальных мощностей в часы пиковых нагрузок.
Трёхфазные тяговые генераторы применяют на тепловозах. Переменные токи для питания двигателей выпрямляются полупроводниковыми устройствами. Сегодня в России уже выпускаются тепловозы на базе асинхронных электродвигателей, не требующих выпрямления тока. В режиме торможения они работают в качестве асинхронных генераторов.
Синхронные генераторы устанавливают на гибридных автомобилях с целью совмещения тяги ДВС и мощности тяговых электродвигателей. Развивая активную мощность при номинальных нагрузках, они позволяют экономить дорогое топливо.
Существует много других сфер применения. Например, мобильные мини-электростанции, бытовые генераторы тока, как однофазный двигатель и т. п.
Генератор тока.
Генератор тока — это такой тип электрической машины, которая способствует преобразованию механической энергии в электрическую. Основано действие генераторов тока по принципу электромагнитной индукции: электродвижущая сила (ЭДС) наводится в движущемся в магнитном поле проводе.
Производить генератор тока может не только постоянный, но и переменный ток. На латыни слово генератор (generator) означает — производитель.
На мировом рынке наиболее известными поставщиками генераторов являются компании: General Electric (GE), ABB, Siemens AG, Mecc Alte.
Генераторы постоянного тока.
Единственным типом источника для получения электроэнергии на протяжении долгого времени были электрические генераторы.
Переменный ток индуктируется в обмотке якоря генератора постоянного тока, затем он электромеханическим выпрямителем — коллектором преобразуется в постоянный ток. Особенно при большой частоте вращения якоря генератора, процесс выпрямления тока коллектором связан с очень частым износом щеток и коллектора.
Различаются генераторы постоянного тока по характеру их возбуждения, они бывают с самовозбуждением и независимого возбуждения. К независимому источнику питания в генераторах с электромагнитным возбуждением подключается обмотка возбуждения, располагающаяся на главных полюсах.
Постоянными магнитами, из которых производятся полюсы машины, возбуждаются генераторы с магнитоэлектрическим возбуждением. Основное применение генераторы постоянного тока находят в тех отраслях промышленности, где постоянный ток является предпочтительным по условиям производства (предприятия электролизной и металлургической промышленности, суда, транспорт и прочие). В качестве источников постоянного тока и возбудителей синхронных генераторов применяются генераторы постоянного тока на электростанциях.
Может достигать до 10 Мегаватт мощность генератора тока.
Генераторы переменного тока.
При достаточно высоком напряжении получать большие токи позволяют генераторы переменного тока. Несколько типов индукционных генераторов различают в настоящее время.
Они состоят из создающего магнитное поле постоянного магнита или электромагнита и обмотки, индуцируется в которой переменная ЭДС. Так как складываются наводимые в последовательно соединенных витках ЭДС, то в рамке индукции амплитуда ЭДС будет пропорциональна количеству в ней витков. Также она пропорциональна через каждый виток амплитуде переменного магнитного потока. В генераторах тока, чтобы получить большой магнитный поток применяется специальная магнитная система, состоящая из двух сердечников, изготовленных из электротехнической стали. В пазах одного из сердечников размещены создающие магнитное поле обмотки, а в пазах второго располагаются обмотки, в которых индуцируется ЭДС. Один из сердечников называется ротором, так как он вращается вокруг вертикальной или горизонтальной оси, вместе со своей обмоткой.
Другой сердечник называется статором — это неподвижный сердечник с его обмоткой. Как можно меньшим делается зазор между сердечниками ротора и статора, наибольшее значение потока магнитной индукции обеспечивается этим. Электромагнит, являющийся ротором вращается в больших промышленных генераторах, а обмотки, уложенные в пазах статора и в которых наводится ЭДС остаются неподвижными.
С помощью скользящих контактов приходится во внешнюю цепь подводить ток к ротору или отводить его из обмотки ротора. Контактными кольцами, которые присоединены к концам его обмотки для этого снабжается ротор. К кольцам прижаты неподвижные пластины-щетки, они осуществляют связь с внешней цепью обмотки ротора. В обмотках создающего магнитное поле электромагнита, сила тока значительно меньше той силы тока, которую отдает генератор тока во внешнюю цепь. Поэтому гораздо удобнее снимать генерируемый ток с неподвижных обмоток, а сравнительно слабый ток подводить через скользящие контакты к вращающемуся электромагниту. Вырабатывается этот ток, расположенным на том же валу отдельным генератором постоянного тока (возбудителем). Вращающимся магнитом создается магнитное поле в маломощных генераторах тока, щетки и кольца в таком случае вообще не требуются.
Бывают двух типов обмотки возбуждения синхронных генераторов: с явнополюсными и неявнополюсными роторами. Выступают из индуктора несущие обмотки возбуждения в генераторах с явнополюсными роторами полюса. На сравнительно низкие частоты вращения рассчитаны генераторы данного типа, они используются для работы с приводом от поршневых паровых машин, гидротурбин, дизельных двигателей. Для привода синхронных генераторов с неявнополюсными роторами применяются газовые и паровые турбины. Стальную поковку с фрезерованными продольными пазами для витков обмотки возбуждения, которые обычно выполнены в виде медных пластин, представляет собой ротор такого генератора. В пазах фиксируются витки, а для снижения потерь мощности и уровня шума, связанных с сопротивлением воздуха шлифуется, а затем полируется поверхность ротора.
По большей части трехфазными делаются обмотки генераторов тока. Подобное сочетание движущихся частей, способных создавать энергию также экономично и непрерывно, встречается в механике редко.
Современный генератор тока является внушительным сооружением, состоящим из медных проводов, стальных конструкций и изоляционных материалов. С точностью до 1 миллиметра изготавливаются важнейшие детали генераторов, которые сами имеют размеры несколько метров.
Генератор переменного тока. Трансформатор
Урок 16. Физика 11 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Генератор переменного тока. Трансформатор»
На одном из прошлых уроков мы с вами знакомились с переменным электрическим током и его свойствами. Мы узнали, что основная часть электроэнергии в мире вырабатывается с помощью электромеханических индукционных генераторов переменного тока, создающими синусоидальное напряжение.
Индукционным генератором переменного тока называется устройство, предназначенное для преобразования механической энергии в энергию переменного тока.
Напомним, что основными частями индукционного генератора переменного тока являются:
индуктор — это постоянный магнит или электромагнит, который создаёт магнитное поле;
якорь — это обмотка, в которой индуцируется переменная ЭДС;
и колле́ктор — контактные кольца и скользящие по ним контактные пластины (щётки), с помощью которых ток снимается или подводится к вращающимся частям.
Вращающаяся часть индукционного генератора называется ротором, а неподвижная — статором.
Как вы знаете, электрический ток вырабатывается на различного рода электростанциях. А выработанная на них электроэнергия передаётся потребителю с помощью линий электропередач (сокращённо ЛЭП). Вроде бы всё просто, но тут есть несколько нюансов. Дело в том, что потребители электричества есть повсюду. А вот производится она в сравнительно немногих местах и, как правило, близко к источникам топливо- и гидроресурсов. Помимо этого электроэнергию невозможно законсервировать в огромных масштабах, поэтому она должна быть потреблена сразу же после получения. Поэтому существует необходимость в передаче электроэнергии на большие расстояния. Однако при передаче электроэнергии неизбежны потери энергии, так как ток, проходя по проводам линии, нагревает их. Энергия тока, идущая на нагревание проводов линии передачи, является потерянной энергией.
Чтобы передача электрической энергии была экономически выгодной, необходимо потери на нагревание проводов сделать возможно малыми. Но как это осуществить? Закон Джоуля — Ленца указывает на два различных пути решения этой проблемы. Один путь — уменьшить сопротивление проводов линии передачи. Это можно сделать, взяв провода с большим сечением. Выясним на примере осуществимо ли это практически.
Пусть на электростанции установлен генератор постоянного тока мощностью 200 кВт, создающий напряжение 120 В. Требуется передать вырабатываемую генератором энергию на расстояние 10 км от станции. Какого сечения нужно взять медные провода, чтобы потери в линии передачи не превышали 10 % от передаваемой мощности?
Практически это значит, что такой способ передачи энергии невозможен.
Другой путь, ведущий к уменьшению потерь энергии в линии передачи, заключается в уменьшении тока в линии передачи. Но при данной мощности уменьшение тока возможно лишь при увеличении напряжения. Пусть теперь та же мощность в 200 кВт передаётся при напряжении 12 кВ. Тогда сила тока в линии электропередач составит примерно 16,67 А (то есть в сто раз меньше, чем в предыдущем случае). Так как величина тока уменьшилась в сто раз, то при тех же потерях мощности в ЛЭП сопротивление линии передачи увеличится в 100 2 раз, то есть в 10 000. А вот сечение проводов в 10 000 раз уменьшиться и станет равным 4,86 мм 2 . Значит и вес меди, идущей на изготовление провода, уменьшится в те же 10 000 раз. Следовательно, передача энергии станет практически возможной.
Таким образом, при передаче электроэнергии на большие расстояния необходимо пользоваться высоким напряжением. При этом чем длиннее линия передачи, тем более высокое напряжение в ней используется/
Поэтому при передаче энергии на большие расстояния приходится повышать напряжение тока, получаемого от генераторов, что осуществляется при помощи трансформаторов.
Трансформатор — это устройство, служащее для преобразования силы и напряжения переменного тока при неизменной частоте.
Днём рождения трансформатора переменного тока считается 30 ноября 1876 года — это дата получения патента Павлом Николаевичем Яблочковым на устройство, предназначенное для питания изобретённых им же электрических свечей — нового в то время источника света.
В основе работы любого трансформатора лежит явление электромагнитной индукции. Рассмотрим схему простейшего трансформатора. Итак, он состоит из двух изолированных катушек (обмоток) с разным числом витков в них. Обмотки находятся на сердечнике, который состоит из отдельных стальных пластин, собранных в замкнутую раму той или иной формы.
Приложим к концам левой обмотки, которую мы будем называть первичной, переменное напряжение (от сети или генератора). По обмотке пойдёт переменный ток, который намагнитит сталь сердечника, создав в нём переменный магнитный поток. По мере нарастания тока будет расти и магнитный поток в сердечнике, изменение которого возбудит в витках катушки ЭДС самоиндукции, мгновенное значение которой равно первой производной магнитного потока через поверхность, ограниченную одним витком, по времени:
Переменный магнитный поток, возникающий в сердечнике трансформатора, пронизывает и витки вторичной обмотки, возбуждая в каждом из них такую же по величине ЭДС индукции, что и в каждом витке первичной обмотки.
Если первичная обмотка имеет N1 витков, а вторичная — N2 витков, то в обмотках индуцируются (без учёта потерь на рассеивание магнитного потока) соответственно электродвижущие силы «ЭДС один» и «ЭДС два»:
Разделив почленно первое уравнение на второе, получим, что возникающие в катушках ЭДС индукции (самоиндукции) пропорциональны числу витков в них:
Обычно активное сопротивление обмоток катушек очень мало и им часто пренебрегают. Поэтому приложенное к концам первичной обмотки напряжение можно считать примерно равным возникающей в ней ЭДС самоиндукции, взятой с обратным знаком:
Если цепь вторичной обмотки трансформатора разомкнута (это так называемый холостой ход трансформатора), то тока в ней нет, и напряжение на зажимах вторичной обмотки, равно индуцированной в ней ЭДС взятой с обратным знаком:
Мгновенные значения обеих ЭДС изменяются синфазно (то есть одновременно достигают максимумов и минимумов). Поэтому их значения можно заменить отношением действующих значений ЭДС или, учитывая предыдущие равенства, отношением действующих значений напряжений:
Величину К, равную отношению числа витков в первичной обмотке к числу витков во вторичной обмотке, называют коэффициентом трансформации.
В том случае, когда нужно повысить напряжение, вторичная обмотка устраивается с большим числом витков (это повышающий трансформатор):
В случае же, когда надо понизить напряжение, вторичная обмотка трансформатора берётся с меньшим числом витков (это понижающий трансформатор):
Пока вторичная обмотка разомкнута, трансформатор работает вхолостую. При холостом ходе он потребляет небольшую энергию, так как ток, намагничивающий стальной сердечник вследствие большой индуктивности катушки, очень мал. Передача энергии из первичной цепи во вторичную при холостом ходе отсутствует.
Нагрузим наш трансформатор, замкнув через нагрузку цепь его вторичной обмотки (это так называемый рабочий ход трансформатора). В этом случае происходит непрерывная передача энергии из первичной обмотки трансформатора в его вторичную обмотку. При этом мощность, выделяемая в первичной цепи и выделяемая на нагрузке, будут определяться уравнениями, представленными на экране:
Напомним, что здесь cos φ определяет коэффициент мощности переменного тока. Зная мощности тока в первичной и вторичной цепи трансформатора, можно найти коэффициент полезного действия последнего:
Согласно закону сохранения и превращения энергии, мощность тока во вторичной цепи должна бы быть равна мощности в первичной цепи:
В действительности же это равенство не соблюдается, так как при работе трансформатора имеются потери на нагревание обмоток трансформатора, на вихревые токи в сердечнике и на перемагничивание сердечника; однако потери эти невелики и сдвиги фаз между колебаниями силы тока и напряжения близки к нулю.
Поэтому трансформатор принадлежит к числу наиболее совершенных преобразователей энергии. А их коэффициент полезного действия достигает девяноста девяти процентов (99 %).
Иногда потерями в трансформаторе можно пренебречь и считать его КПД равным 100 %. Тогда из равенства мощностей первичной и вторичной цепи следует, что нагрузочные токи в первичной и вторичной обмотках трансформатора обратно пропорциональны приложенным к ним напряжениям:
Это означает, что, повышая с помощью трансформатора напряжение в несколько раз, мы во столько же раз уменьшаем силу тока (и наоборот).
Для закрепления материала, решим с вами такую задачу. Трансформатор, содержащий в первичной обмотке 350 витков, включён в сеть с напряжением 220 В. Ко вторичной обмотке трансформатора, имеющей 155 витков, включён потребитель сопротивлением 80 Ом. Какова сила тока во вторичной цепи, если падение напряжения на потребителе равно 70 В? Чему равно сопротивление вторичной катушки?
В заключение отметим, что напряжение, вырабатываемое генераторами на различных электростанциях, обычно не превышает 20 кВ. В то время, как мы показали ранее, для оптимальной передачи электричества на большие расстояния требуется напряжение в несколько сотен киловольт. Поэтому ток с электростанции сначала подаётся на расположенную неподалёку повышающую трансформаторную подстанцию, а затем — в линии электропередач. Но поскольку очень высокое напряжение не может быть предложено потребителю, то в конце линии его подают поочерёдно на несколько трансформаторных подстанций, понижающих напряжение до 380 В или 220 В. И лишь потом электроэнергию получают жилые дома и предприятия.
Источник: