Электрической энергии работает в режиме генератора

Электрической энергии работает в режиме генератора

Содержание
  1. Как работает электрический генератор
  2. Два режима работы источника питания
  3. Электрический генератор
  4. Основное оборудование электрических станций и подстанций
  5. История изобретения генератора электрического тока
  6. Принцип работы любого электрического генератора
  7. Синхронный электрогенератор
  8. Асинхронный электрогенератор
  9. Устройство генератора
  10. Принцип действия генератора
  11. Виды генераторов
  12. Применение
  13. Электрогенератор
  14. Принцип работы первого генератора
  15. Как работает электрогенератор?
  16. Современный водяной двигатель
  17. Электричество из воды
  18. Гидроэлектростанции-гиганты
  19. §25. Процесс преобразования энергии в электрических машинах. Режимы их работы
  20. Можно ли использовать электродвигатель как генератор
  21. Содержание
  22. Законы, позволяющие использовать асинхронный электродвигатель как генератор
  23. Способы переделки электродвигателя в генератор
  24. Торможение реактивной нагрузкой
  25. Самовозбуждение электродвигателя
  26. Что нужно знать, чтобы электродвигатель работал как генератор
  27. Насколько эффективно использование электродвигателя в качестве генератора

Как работает электрический генератор

Функция любого электрического генератора — вырабатывать электрический ток. Но на самом деле генератор ничего не производит, а лишь преобразует один вид энергии — в другой (как это и свойственно всем энергетическим процессам в природе). Чаще всего, произнося словосочетание «электрический генератор», имеют ввиду машину, преобразующую механическую энергию — в электрическую.

Механическая энергия может быть получена от расширяющегося под давлением газа или пара, от падающей воды или даже вручную. В любом случае для получения от генератора электрической энергии, ему необходимо сначала передать эту энергию в приемлемой форме, чаще всего в механической.

— А откуда у вас электричество?
— Два гигантских хомяка крутят колёса в секретном бункере.

Остаться в живых (Lost)

Генераторы, работающие посредством механического привода, — доминирующий вид генераторов в современном мире. Такие генераторы работают на атомных и гидроэлектростанциях, в автомобилях, в дизельных и бензиновых генераторах, на ветряках, в ручных динамо-машинах и т. д. Пар, бензин, ветер — служат источниками механической энергии, вращающей ротор генератора.

Пример работы простого электрогенератора:

На роторе генератора закреплена обмотка намагничивания или постоянные магниты. В последние годы широкое распространение получают генераторы с неодимовыми магнитами на роторе, так как современные неодимовые магниты не уступают по своим характеристикам мощной обмотке намагничивания.

Принцип выработки электрической энергии в генераторе основан на явлении электромагнитной индукции, которое заключается в том, что изменяющийся в пространстве магнитный поток индуцирует вокруг этого пространства электрическое поле.

И если в область где присутствует это индуцированное электрическое поле поместить проводник, то в нем наведется (будет индуцирована) ЭДС — электродвижущая сила, и между концами проводника можно будет наблюдать (измерить, использовать для питания нагрузки) соответствующее напряжение.

Изменяющийся магнитный поток получается в генераторе при помощи движущихся вместе с ротором магнитов или полюсных наконечников, намагничиваемых специальными обмотками — обмотками намагничивания. Обмотки намагничивания обычно получают питание через щетки и контактные кольца.

Применение генератора для электрификации модели железной дороги:

Провода, в которых наводится ЭДС (электрическое напряжение) в генераторе, представляют собой обмотку статора, расположенную, как правило, в магнитопроводе, закрепленном на неподвижной части электрической машины. Эта обмотка у генераторов разного типа может быть выполнена различным образом.

В трехфазных генераторах переменного тока приняты обмотки статора, изготовленные по трехфазной схеме, — три части такой трехфазной обмотки могут быть соединены «звездой» или «треугольником».

Соединение звездой позволяет получить от генератора напряжение большей величины, чем при соединении треугольником. Разница в напряжениях составит корень из 3 раз (около 1,73). Чем больше напряжение — тем меньше максимальный ток, который можно получить от данного генератора на нагрузке.

Работа электрического генератора на электростанции:

Номинальная мощность генератора зависит от нескольких факторов, которые определяют его номинальные ток и напряжение. Напряжение на выходных клеммах генератора зависит от длины обмотки (провода) статора, от скорости вращения ротора и от индукции магнитного поля на его полюсах. Чем эти параметры больше — тем большее напряжение получается с генератора на холостом ходу и под нагрузкой.

Портативный генератор (мини-электростанция) для автономного электроснабжения:

Максимальный ток, который можно получить от генератора, теоретически ограничен его током короткого замыкания. Практически при номинальных оборотах он зависит от толщины провода обмотки статора и от общего магнитного потока ротора.

Если магнитного потока не достаточно, в некоторых случаях прибегают к увеличению оборотов. Но тогда генератор обязательно должен быть оснащен автоматическим регулятором напряжения, как это реализовано в автомобильных генераторах, которые способны выдавать приемлемый для зарядки аккумулятора ток в широком диапазоне оборотов.

Два режима работы источника питания

На рис. 2-10 показана цепь с двумя источниками питания и их внутренними сопротивлениями r01 и r02 . Ток в этой цепи можно определить по методу наложения, как алгебраическую сумму токов, созданных отдельными источниками. Допустим сначала, что э, д. с. первого источника E1 0 , а второго E2 0, затем наоборот, E1 , а E2 .

В первом случае ток в цепи, совпадающий по направлению с
э. д. с. E1 может быть выражен через:

Во втором случае ток, совпадающий по направлению с э. д. с. E2 ,

При одновременном действии э. д. с, т. е. при E1 и E2 , ток в цепи найдем сложением токов I 1 и I 2 (метод наложения), т. е.

При одинаковом внутри контура направлении э. д. с. , E1 и E2 токи I 1 и I 2 также направлены одинаково.
При встречном (как показано на рис. 2-10) направлении э. д. с, E1 и E2 ток в цепи равен разности токов:

т. е. он возникает только при E1 E2 , а направление тока совпадает с направлением большей э. д. с. Допустим, что E1 > E2 , тогда направление тока совпадет с направлением E1 и будет противоположно направлению E2 . Электродвижущая сила E2 направленная встречно току, называется встречной или противо-э. д. с.
В сопротивлении r (участок БВ, рис. 2-10) электрическая энергия преобразуется в тепловую. Мощность на этом участке

а падение напряжения на этом участке

На участке ВГ, кроме тепловой мощности I 2 r02 , развивается еще мощность E2 I , которая преобразуется в химическую или механическую в зависимости от устройства источника (аккумулятор или электрическая машина), так как электрические силы совершают работу по преодолению действия встречной э. д. с. Таким образом, источник с противо-э. д. с. E2 работает в режиме потребителя.
Развиваемая на участке ВГ мощность

а напряжение на нем

Следовательно, напряжение на зажимах источника, работающего в режиме потребителя, равно сумме э. д. с. и внутреннего падения напряжения.
На участке БА э. д. с. E1 совпадает по направлению с током I ,, так что источник с э. д. с. (аккумулятор или электрическая машина) работает в режиме генератора. Поэтому э. д. с. его равна сумме напряжения на зажимах и внутреннего падения напряжения .

а напряжение на зажимах генератора

Из написанного следует, что напряжение на зажимах источника, работающего в режиме генератора (т. е. отдающего электроэнергию), равно разности э. д. с. и внутреннего падения напряжения.
Развиваемая источником, работающим в генераторном режиме, мощность (2-25)

Источник питания может работать как в режиме генератора, так и в режиме потребителя электрической энергии. В первом случае его напряжение меньше э. д. с. ( U E) , а направления тока и э. д. с. совпадают. Во втором случае его напряжение больше э. д. с.
( U > E)
, а ток и э. д. с. имеют противоположные направления.

Электрический генератор

Основное оборудование электрических станций и подстанций

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История изобретения генератора электрического тока

Русский ученый Э.Х.Ленц еще в 1833г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863г.

Читайте также  Шевроле лачетти универсал сцепление схема

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867гг. ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г.А.Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой.

Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Принцип работы любого электрического генератора

Принцип работы любого электрического генератора основан на явлении электромагнитной индукции. Электромагнитная индукция преобразовывает механическую энергию двигателя (вращение0 в энергию электрическую. Принцип магнитной индукции: если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один — Э.Д.С., изменяющаяся по гармоническому закону.

Вот теперь и поговорим о асинхронном и синхронном генераторе более подробно.

Синхронный электрогенератор

Синхронный электрогенератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС. В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита.

Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется «реакцией якоря».

Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR. Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком — возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать. Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.

Асинхронный электрогенератор

Асинхронный электрогенератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора. В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным.

Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции.

Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

Устройство генератора

Основными частями любого генератора являются: система магнитов (или, чаще всего, электромагнитов), создающих магнитное поле, и система проводников, пересекающих это магнитное поле. При пропускании магнитного поля через катушку магнитный поток принудит свободные электроны сместиться на концы проводника. Подобное смещение отрицательно заряженных частиц становится источником возникновения электродвижущей силы — ЭДС (напряжение). В результате у генератора при вращении его оси идёт постоянное воздействие магнитного потока на обмотки, на которых и возникает ЭДС.

Составные части генератора:

  • коллектор,
  • щетки,
  • магнитные полюса,
  • витки,
  • вал,
  • якорь.

Принцип действия генератора

Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник можно использовать как источник электрической энергии.

Виды генераторов

  • электрогенераторы,
  • бензогенераторы,
  • дизельгенераторы,
  • инверторные генераторы.

Применение

Генераторы используются во многих сферах жизнедеятельности и производства, при различных условиях. Бензогенераторы незаменимы в случае отключения электричества в небольших загородных домах и дачах. Кроме того, их удобно применять в тех местах, где нет электроэнергии (отдаленные районы, горы, леса). Дизельные генераторы применяется в качестве основного или резервного источника электропитания. Инверторные генераторы незаменимы как источник дополнительного питания для электронного оборудования. Такие электростанции исспользуются организациями, использующими различную электронную технику.

Электрогенератор

Электрический генератор (от латинского — «производитель») — устройство, вырабатывающее электрическую энергию, то есть преобразующее механическую энергию в электрический ток.

Благодаря изобретению генератора уже в середине XIX в. у промышленности и населения появилась реальная возможность производства и использования электричества, например, для работы станков или освещения домов и улиц. Кстати, электрические двигатели постоянного тока по своей конструкции практически полностью аналогичны генераторам. Более того, если вращать якорь электромотора постоянного тока (например, от электрической машинки или другой игрушки), он, как и генератор, начнет вырабатывать ток.

Читайте также  Установка генератора с выносным реле регулятором

Принцип работы первого генератора

В 1831 г. английский ученый Майкл Фарадей открыл электромагнитную индукцию. Сущность этого открытия заключалась в том, что если вращать проводник между полюсами магнита, то в нем возникнет электромагнитное поле. Такое поле возбуждает движение электронов, и по проводнику начинает течь электрический ток. Благодаря этому открытию стало возможным создание электрического генератора и электрического двигателя.

Как работает электрогенератор?

Работа электрогенератора состоит во взаимодействии статора, ротора и контактных колец. Статор во включенном генераторе остается неподвижным. Расстояние между статором и ротором составляет всего лишь несколько миллиметров, поэтому между ними возникает очень сильное магнитное поле, и в обмотке ротора появляется электрический ток большой мощности. Обмотка статора при подаче напряжения от внешнего источника превращается в электромагнит.

Ротор соединен с валом механического устройства (двигатель внутреннего сгорания, ветряной или водяной двигатель и т. п.) и вращается во время работы генератора. Обмотка ротора в момент своего движения постоянно пересекает магнитное поле, создаваемое обмотками статора, и в ней образуется электрический ток.

Такая конструкция позволила избавиться от больших и тяжелых постоянных магнитов. Контактные кольца предназначены для съема электрической энергии с обмоток ротора. Они представляют собой барабан со множеством медных пластин, к которым подключены обмотки ротора. Снаружи с ними соприкасаются графитовые щетки, к которым с помощью проводов подключен потребитель электрической энергии.

Современный водяной двигатель

В современных водяных двигателях колесо с лопастями заменено более скоростной водяной турбиной (образовано от слова «турбо» — «вихрь»). Чаще всего она имеет спиральный кожух, по форме напоминающий раковину улитки. Вода поступает в широкий конец кожуха. Так как «коридор», по которому она течет, все время сужается, ее напор увеличивается.

Затем усиленный поток воды поступает на вогнутые лопатки турбины, которая расположена в центре «улитки», и вращает ее. Так энергия потока воды преобразуется в механическую работу.

Электричество из воды

В наши дни электричество производят на гидроэлектростанциях, которые используют энергию движущейся воды.

Гидроэлектростанция состоит из двух основных частей: энергоблока и плотины (или дамбы), накапливающей воду. В энергоблоке расположены генераторы, вырабатывающие электрический ток. Их роторы вращаются благодаря водяным турбинам. Так энергия потока воды преобразуется в электрическую.

Гидроэлектростанции-гиганты

Одна из самых мощных в мире гидроэлектростанций была построена в Китае на реке Янцзы и получила название «Три ущелья». Ее бетонная плотина имеет длину 2309 м и высоту 185 м. Общая мощность электрогенераторов станции составляет почти 23 МВт (1 МВт = 1 млн Вт). За год они вырабатывают около 100 млрд кВт/ч электроэнергии.

Лишь немногим меньше электроэнергии вырабатывает гидроэлектростанция «Итайпу», расположенная на реке Парана (на границе Бразилии и Парагвая), которая имеет самую большую плотину. Высота этого гигантского сооружения достигает 196 м, а длина — 7235 м.

§25. Процесс преобразования энергии в электрических машинах. Режимы их работы

Электрические машины разделяют по назначению на два основных вида: э. Генераторы предназначены для выработки электрической энергии, а электродвигатели — для приведения в движение колесных пар локомотивов, вращения валов вентиляторов, компрессоров и т. п.

В электрических машинах происходит процесс преобразования энергии. Генераторы преобразуют механическую энергию в электрическую. Это означает, что для работы генератора надо вращать его вал каким-либо двигателем. На тепловозе, например, генератор приводят во вращение дизелем, на тепловой электростанции — паровой турбиной, на гидроэлектростанции — водяной турбиной. Электрические двигатели, наоборот, преобразуют электрическую энергию в механическую. Поэтому для работы двигателя его надо соединить проводами с источником электрической энергии, или, как говорят, включить в электрическую сеть.
Принцип действия любой электрической машины основан на использовании явлений электромагнитной индукции и возникновения электромагнитных сил при взаимодействии проводников с током и магнитного поля. Эти явления имеют место при работе как генератора, так и электродвигателя. Поэтому часто говорят о .
Во вращающихся электрических машинах в процессе преобразования энергии участвуют две основные части: якорь и индуктор со своими обмотками, которые перемещаются относительно друг друга. Индуктор создает в машине магнитное поле; в обмотке якоря индуцируется э. д. с. и возникает ток. При взаимодействии тока в обмотке якоря с магнитным полем создаются электромагнитные силы, посредством которых реализуется процесс преобразования энергии в машине.

Принцип действия электрического генератора. Простейшим электрическим генератором является виток, вращающийся в магнитном поле (рис. 67, а). В этом генераторе виток 1 представляет собой обмотку якоря. Индуктором служат постоянные магниты 2, между которыми вращается якорь 3. При вращении витка с некоторой частотой вращения п его стороны (проводники) пересекают магнитные силовые линии потока Фив каждом проводнике индуцируется э. д. с. . При принятом на рис. 67, а направлении вращения якоря э. д. с. в проводнике, расположенном под южным полюсом, согласно правилу правой руки направлена от нас, а э.д.с. в проводнике, расположенном под северным полюсом,— к нам. Если подключить к обмотке якоря приемник электрической энергии 4, то по замкнутой цепи пойдет электрический ток i. В проводниках обмотки якоря ток I будет направлен так же, как и э. д. с. .

Выясним, почему для вращения якоря в магнитном поле приходится затрачивать механическую энергию, получаемую от дизеля или турбины (первичного двигателя). Как было установлено в главе II, при прохождении тока I по расположенным в магнитном поле проводникам на каждый проводник действует электромагнитная сила F. При указанном на рис. 67, а направлении тока согласно правилу левой руки на проводник, расположенный под южным полюсом, будет действовать сила F, направленная влево, а на проводник, расположенный под северным полюсом,— сила F, направленная вправо. Указанные силы создают совместно электромагнитный момент М, направленный по часовой стрелке.
Из рассмотрения рис. 67, а видно, что , стремящимся замедлить вращение якоря генератора. Для того чтобы предотвратить остановку якоря, требуется к валу якоря приложить внешний вращающий момент Мвн, противоположный моменту М и равный ему по величине. С учетом же трения и других внутренних потерь в машине внешний вращающий момент должен быть больше электро-

магнитного момента М, созданного током нагрузки генератора. Следовательно, для продолжения нормальной работы генератора к нему необходимо подводить извне механическую энергию — вращать его якорь каким-либо двигателем 5.

При отсутствии нагрузки (при разомнутой внешней цепи генератора) имеет место режим холостого хода генератора. В этом случае от дизеля или турбины требуется только такое количество механической энергии, которое необходимо для преодоления трения и компенсации других внутренних потерь энергии в генераторе. При увеличении нагрузки генератора, т. е. отдаваемой им электрической мощности Рэл, увеличиваются ток i, проходящий по проводникам обмотки якоря, и создаваемый им тормозящий момент М. Следовательно, должна быть соответственно увеличена и механическая мощность Рмх, которую генератор должен получить от дизеля или турбины, для продолжения нормальной работы.

Таким образом, чем больше электрической энергии потребляется, например, электродвигателями тепловоза от тепловозного генератора, тем больше механической энергии забирает он от вращающего его дизеля и тем больше топлива необходимо подавать дизелю.

Из рассмотренных выше условий работы электрического генератора следует, что характерным для него является:

Принцип действия электрического двигателя. Принципиально электродвигатель выполнен так же, как генератор. Простейший электродвигатель представляет собой виток 1 (рис. 67,6), расположенный на якоре 3, который вращается в магнитном поле полюсов 2. Проводники витка образуют обмотку якоря. Если подключить виток к источнику электрической энергии, например к электрической сети 6, то по каждому его проводнику начнет проходить электрический ток i. Этот ток, взаимодействуя с магнитным полем полюсов, создает электромагнитные силы F. При указанном на рис. 67, б направлении тока на проводник, расположенный под южным полюсом, будет действовать сила F, направленная вправо, а на проводник, лежащий под северным полюсом,— сила F, направленная влево. В результате совместного действия этих сил создается электромагнитный вращающий момент М, направленный против часовой стрелки, приводящий якорь с проводником во вращение с некоторой частотой п. Если соединить вал якоря с каким-либо механизмом или устройством 7 (колесной парой тепловоза или электровоза, станком и пр.), то электродвигатель будет приводить это устройство во вращение, т. е. отдавать ему механическую энергию. При этом внешний момент Мвн, создаваемый этим устройством, будет направлен против электромагнитного момента М.

Читайте также  Щеточный узел генератора тойота королла 120

Выясним, почему при вращении якоря электродвигателя, работающего под нагрузкой, расходуется электрическая энергия. Как было установлено, при вращении проводников якоря в магнитном поле в каждом проводнике индуцируется э. д. с, направление которой определяется по правилу правой руки; следовательно, при указанном на рис. 67, б направлении вращение э. д. с. е, индуцированная в проводнике, расположенном под южным полюсом, будет направлена от нас, а э. д. с. е, индуцированная в проводнике, расположенном под северным полюсом, будет направлена к нам. Из рис. 67, б видно, что э. д. с. е, индуцированные в каждом проводнике, направлены против тока i, т. е. они препятствуют его прохождению по проводникам.

Для того чтобы ток i продолжал проходить по проводникам якоря в прежнем направлении, т. е. чтобы электродвигатель продолжал нормально работать и развивать требуемый вращающий момент, необходимо приложить к этим проводникам внешнее напряжение U, направленное навстречу э. д. с. и большее по величине чем суммарная э. д. с. E, индуцированная во всех последовательно соединенных проводниках обмотки якоря. Следовательно, необходимо подводить к электродвигателю из сети электрическую энергию.

При отсутствии нагрузки (внешнего тормозного момента, приложенного к валу двигателя) электродвигатель потребляет от внешнего источника (сети) небольшое количество электрической энергии и по нему проходит небольшой ток холостого хода. Эта энергия расходуется на покрытие внутренних потерь мощности в машине.

При возрастании нагрузки увеличивается потребляемый электродвигателем ток и развиваемый им электромагнитный вращающий момент. Следовательно, увеличение механической энергии, отдаваемой электродвигателем при возрастании нагрузки, вызывает автоматически увеличение электроэнергии, забираемой им от источника.

Из рассмотренных выше условий работы электрического двигателя следует, что характерным для него является:

Принцип обратимости электрических машин. Рассматривая принцип действия генератора и электродвигателя, мы установили, что устроены они одинаково и что в основе работы этих машин много общего. Процесс преобразования механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе связан с индуцированием э. д. с. во вращающихся в магнитном поле проводниках обмотки якоря и возникновением электромагнитных сил в результате взаимодействия магнитного поля и проводников с током. Отличие генератора от электродвигателя заключается только во взаимном направлении э. д. с, тока, электромагнитного момента и частоты вращения.

Обобщая рассмотренные процессы работы генератора и электродвигателя, можно установить принцип обратимости электрических машин. Согласно этому принципу

Для выяснения этого положения рассмотрим работу электрической машины постоянного тока при различных условиях. Если внешнее напряжение U больше суммарной э. д. с. Г. во всех последовательно соединенных проводниках обмотки якоря, то ток I будет проходить в указанном на рис. 68, а направлении и машина будет работать электродвигателем, потребляя из сети электрическую энергию и отдавая механическую. Однако если по какой-либо причине э. д. с. Е станет больше внешнего напряжения U, то ток I в обмотке якоря изменит свое направление (рис. 68, б) и будет совпадать с э. д. с. Е. При этом изменится и направление электромагнитного момента М, который будет направлен против частоты вращения п. Совпадение по направлению э. д. с. E и тока Iозначает, что машина стала отдавать в сеть электрическую энергию, а появление тормозного электромагнитного момента М говорит о том, что она должна потреблять извне механическую энергию. Следовательно, когда э. д. с. Е, индуцированная в проводниках обмотки якоря, становится больше напряжения сети U, машина переходит из двигательного режима работы в генераторный, т. е. при E U — генератором.

Перевод электрической машины из двигательного режима в генераторный можно осуществить различными способами: уменьшая напряжение U источника, к которому подключена обмотка якоря, или увеличивая э. д. с. E в обмотке якоря.

Можно ли использовать электродвигатель как генератор

Содержание

  1. Законы, позволяющие использовать асинхронный электродвигатель как генератор
  2. Способы переделки электродвигателя в генератор
  3. Торможение реактивной нагрузкой
  4. Самовозбуждение электродвигателя
  5. Что нужно знать, чтобы электродвигатель работал как генератор
  6. Насколько эффективно использование электродвигателя в качестве генератора

Всем известно, что работа электродвигателя – это преобразование электрической энергии в механическую. Удастся ли заставить его преобразовывать механическую энергию в электрическую, чтобы использовать электродвигатель как генератор? Благодаря действующему в электротехнике принципу обратимости это возможно. Но нужно четко знать принцип работы агрегата и создать условия, способствующие превращению.

Законы, позволяющие использовать асинхронный электродвигатель как генератор

В генераторе напряжение, обычно подаваемое с аккумулятора, возбуждает в обмотке якоря магнитное поле, вращение же обеспечивается любым физическим устройством. В электродвигателе возможность подачи напряжения на обмотку якоря не предусмотрена. Чтобы он не поглощал, а вырабатывал электроэнергию, магнитное поле необходимо создать искусственно.

В асинхронном двигателе вращающееся магнитное поле ротора «отстает» от поля статора, обеспечивая процесс перехода электроэнергии в механическую энергию. Следовательно, чтобы запустить обратный процесс, нужно сделать так, чтобы поле статора вращалось медленнее поля ротора, либо чтобы оно вращалось в противоположную сторону.

Способы переделки электродвигателя в генератор

Есть два способа «регулировки» магнитного поля статора.

Торможение реактивной нагрузкой

Сделать это можно с помощью мощной конденсаторной батареи. Включите ее в цепь питания двигателя, который работает в обычном режиме. Заряд, накопленный в батарее, будет в противофазе с зарядом, создаваемым питающим напряжением, что приведет к замедлению последнего. После этого двигатель вместо поглощения тока начинает генерировать его, отдавая в сеть.

Любой транспорт на электротяге работает именно благодаря этому эффекту – при «самостоятельном» движении под уклон механическая энергия не требуется, и конденсаторная батарея автоматически подключается к цепи питания. Вырабатываемая энергия подается в сеть, чтобы затем опять преобразоваться в механическую.

Самовозбуждение электродвигателя

Остаточное магнитное поле ротора может произвести ЭДС, достаточное для зарядки конденсатора. Вследствие этого возникает эффект самовозбуждения, что делает возможным переход двигателя в режим генерации электроэнергии. Непрерывность этого процесса обеспечивает конденсаторная батарея, подпитывающаяся от произведенного тока.

Этот способ является более действенным, и именно он подходит, если вы хотите применить асинхронный электродвигатель как генератор.

Что нужно знать, чтобы электродвигатель работал как генератор

При переделке двигателя в генератор следует учитывать следующие технические детали:

  • Не пытайтесь использовать электролитические конденсаторы – они не пригодны для подключения в цепь. Вам нужны неполярные конденсаторные батареи.
  • В трехфазных машинах конденсаторы могут включаться по схеме «треугольник» или «звезда». В первом случае величина напряжения на выходе выше, а во втором генерация начинается на меньших оборотах ротора. Выбирайте оптимальный для достижения вашей цели вариант.
  • Однофазные асинхронные двигатели с короткозамкнутым ротором тоже могут генерировать электроэнергию. Запуск осуществляется с помощью фазосдвигающего конденсатора.

Поскольку определить необходимую величину емкости конденсаторной батареи невозможно, остается подбирать ее по весу – он должен быть равен весу двигателя или слегка превышать его.

Насколько эффективно использование электродвигателя в качестве генератора

У использования электродвигателя как генератора есть свои «плюсы»:

  • Агрегат достаточно прост в обслуживании и экономичен, поскольку конденсатор получает энергию от остаточного поля ротора и от вырабатываемого тока.
  • Практически отсутствуют «побочные» траты энергии на магнитные поля или бесполезный нагрев.
  • Преобразованный в генератор двигатель чувствителен к перепадам нагрузки.
  • Частота вырабатываемого тока часто нестабильна.
  • Такой генератор не может обеспечить промышленную частоту тока.

Если в вашем случае преимущества перевешивают недостатки, то применение асинхронного генератора целесообразно.

Источник: nevinka-info.ru

Путешествуй самостоятельно