Что представляет собой ротор генератора трехфазного тока
- Трехфазный асинхронный генератор переменного тока с короткозамкнутым ротором
- Трехфазный генератор – принцип работы и его устройство
- Принцип работы
- Разновидности
- Устройство трехфазного генератора
- Как устроен генератор переменного тока — назначение и принцип действия
- Превращение механической энергии в электрическую
- Устройство и конструкция генератора переменного тока
- Схема генератора переменного тока
- Классификация и виды агрегатов
- По принципу работы
- Асинхронный
- Синхронный
- По типу топлива двигателя
- Газовый генератор
- Дизельный генератор
- Бензогенератор
- Короткозамкнутый и фазный ротор — в чем различие
- 26. Конструкции роторов в трехфазных синхронных генераторах.
- 27. Самовозбуждение трехфазного синхронного генератора.
- Трехфазный генератор: общее устройство, принцип действия, симметричная система фазных ЭДС
Трехфазный асинхронный генератор переменного тока с короткозамкнутым ротором
Трехфазный асинхронный генератор переменного тока с короткозамкнутым ротором относится к электротехнике, а именно к генераторам переменного тока, и может быть использован при проектировании и производстве источников переменного электрического тока. Трехфазный асинхронный генератор переменного тока с короткозамкнутым ротором представляет собой установленный внутри статора ротор на цилиндрическом валу, который установлен в корпусе. Цилиндрический вал соединен с бензиновым двигателем. На внешней поверхности ротора находиться короткозамкнутая обмотка возбуждения, на внутренней поверхности статора — обмотка переменного тока. С обмотки переменного тока наружу с корпуса выходят шесть проводов: три провода начала обмоток (фазы) и три провода концов обмоток, являющиеся нейтральными (нулевыми), которые соединены в одну точку «звездой». Снаружи начала этих обмоток соединены попарно через конденсаторы между собой «треугольником». Технический результат состоит в упрощении конструкции и увеличении функциональности генератора, возможности преобразования механической энергии в электрический ток с напряжением 220 В или 380 В по выбору потребителя без использования якоря, щеток и щеткодержателей.
Область техники, к которой относится полезная модель.
Трехфазный асинхронный генератор переменного тока с короткозамкнутым ротором относится к электротехнике, а именно к генераторам переменного тока, и может быть использован при проектировании и производстве источников переменного электрического тока.
Известен трехфазный генератор переменного тока, в котором электричество вырабатывается путем вращения ротора, который представляет собой магнит, являющийся якорем, оси которых сдвинуты одна относительно другой на угол 120°. При вращении ротора в трех фазных обмотках статора индуктируются электродвижущая сила (ЭДС) (Элементарный учебник физики. Под ред. акад. Г.С. Ландсберга. М.: Наука, 1966. Т. 2, § 167, § 170). На статоре расположены три отдельные обмотки (фазные обмотки).
От каждой фазной обмотки отходят два провода: начало и конец.
Концы фазных обмоток соединены между собой «звездой» в одну общую нейтральную точку, от которой отходит нейтральный провод. Начала фазных обмоток генератора являются линейными. Напряжения между нулевым проводом и линейным (фазное напряжение) 220 В, а напряжения между линейными проводами (линейное напряжение) 380 В.
В таком генераторе ввиду невозможности прямой передачи электрической энергии при помощи проводов, подача электричества осуществляется при помощи токопроводящего кольца с прилегающими к нему щетками. Недостаток таких генераторов — наличие магнита, якорной обмотки, колец, щеток, щеткодержателей, что значительно усложняют конструкцию и делает менее надежной и долговечной.
Наиболее близким по технической сущности к заявляемому объекту является Трехфазный асинхронный генератор переменного тока с короткозамкнутым ротором без нейтрального контакта, в качестве которого на практике используют асинхронный двигатель (http://electro-shema.ru/asinxronnyj-elektrodvigatel-v-kachestve-generatora.html). Он состоит из статора и ротора. Статор представляет собой литой корпус (стальной или чугунный) цилиндрической формы. Внутри статора располагается магнитопровод с пазами, в которые укладывается статорная обмотка. Концы обмоток выводятся в клеммную коробку и могут быть соединены как треугольником, так и звездой. Корпус статора с торцов закрыт подшипниковыми щитами, в которые запрессовываются подшипники вала ротора. Ротор состоит из стального вала с напрессованным на него магнитопроводом. В пазы заливаются алюминиевые стержни и накоротко замыкаются по торцам. К обмоткам статора подводится трехфазное напряжение, а ротор вращается посредством вращающегося магнитного поля, создаваемого системой трехфазного тока.
Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется Э.Д.С. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов, то в обмотках статора потечет опережающий емкостный ток, являющийся в данном случае намагничивающим.
В таком генераторе кольца и щетки вообще не нужны. Однако выдаваемое напряжение равно 380 В, так как нет нейтрального контакта.
Раскрытие полезной модели.
Представляемый Трехфазный асинхронный генератор переменного тока с короткозамкнутым ротором, представляет собой установленный внутри статора ротор на цилиндрическом валу, который установлен в корпусе. Цилиндрический вал соединен с бензиновым двигателем. На внешней поверхности ротора находиться короткозамкнутая обмотка возбуждения, на внутренней поверхности статора — обмотка переменного тока. С обмотки переменного тока наружу с корпуса выходят шесть проводов: три провода начала обмоток (фазы) и три провода концов обмоток, являющиеся нейтральными (нулевыми), которые соединены в одну точку «звездой». Снаружи начала этих обмоток соединены попарно через конденсаторы между собой «треугольником». Таким образом, на выходе генератор вырабатывает ток с напряжением 220 В или 380 В по выбору потребителя.
Технический результат состоит в упрощении конструкции и увеличении функциональности генератора, возможности преобразования механической энергии в электрический ток с напряжением 220 В или 380 В по выбору потребителя без использования якоря, щеток и щеткодержателей.
Краткое описание чертежей.
Трехфазный асинхронный генератор переменного тока с короткозамкнутым ротором представляет собой ротор 1, с короткозамкнутой обмоткой 2 установленный на цилиндрический вал 3, который установлен в корпусе 4. На внешней поверхности ротора находиться короткозамкнутая обмотка возбуждения 2, на внутренней поверхности статора 5 — обмотка переменного тока 6. С обмоток переменного тока наружу с корпуса выходят шесть проводов: три провода начала обмоток 7 и три провода концов обмоток 8, являющиеся нейтральными, которые соединены в одну точку 9. Снаружи начала этих обмоток соединены между собой попарно через конденсаторы 10.
Осуществление полезной модели Трехфазный асинхронный генератор переменного тока с короткозамкнутым ротором позволяет преобразовывать механическую энергию бензинового генератора в электрическую энергию напряжением 220 В или 380 В по выбору потребителя. Бензиновый двигатель вращает вал 3, на котором установлен ротор 1, с короткозамкнутой обмоткой возбуждения 2. Ротор 1 находится внутри статора 5, на внутренней поверхности которого установлены обмотки переменного тока 6. Начала этих обмоток 7 соединяются между собой попарно конденсаторами 10 и отходящие от них провода являются фазными и находятся под напряжением 380 В. Концы обмоток 8 являются нейтральными и соединяются в один нейтральный провод 9. Таким образом, напряжение между двумя фазными проводами равно 380 В, а напряжение между фазным проводом и нейтральным проводом 220 В.
Трехфазный асинхронный генератор переменного тока с короткозамкнутым ротором, представляет собой ротор с короткозамкнутой обмоткой возбуждения на цилиндрическом валу, соединенном с бензиновым двигателем, установленный внутри статора, на внутренней поверхности которого находятся обмотки переменного тока, с которых наружу выходят шесть проводов: три провода начала обмоток, соединенных между собой попарно через конденсаторы, и три нейтральных провода концов обмоток, соединенных в одну точку, что дает возможность преобразовывать механическую энергию в электрический ток.
Трехфазный генератор – принцип работы и его устройство
Тот, кто незнаком с генераторами, объясняем, что это агрегат, в котором из одного вида энергии получается другая. А, точнее, из механической электрическая. При этом эти приборы могут генерировать как ток постоянный, так и ток переменный. До середины двадцатого века использовались в основном генераторы постоянного тока. Это были аппараты больших размеров, которые работали не очень хорошо. Появление на рынке диодов полупроводникового типа позволило изобрести трехфазный генератор переменного тока. Именно диоды позволяют выпрямить переменный ток.
Принцип работы
В основе работы трехфазного генератора лежит закон Фарадея – закон электромагнитной индукции, который гласит, что электродвижущая сила будет обязательно индуцироваться во вращающейся прямоугольной рамке, которая установлена между двумя магнитами. При этом делается оговорка, что магниты будут создавать вращающееся магнитное поле. Направление вращения и рамки, и магнитного поля обязательно совпадают. Но электродвижущая сила будет возникать и в том случае, если рамка останется неподвижной, а внутри нее вращать магнит.
Чтобы разобраться, как работает генератор, обратите внимание на рисунок ниже. Это простейшая схема его работы.
Здесь хорошо видны магниты с разными полюсами, рамка, вал и токосъемные кольца, с помощью которых производится отвод тока.
Конечно, это просто схема, хотя лабораторные генераторы так и создавались. На практике же обычные магниты заменяют электромагнитами. Последние – это медная обмотка или катушки индуктивности. Когда по ним проходит электрический ток, образуется необходимое магнитное поле. Такие генераторы установлены во всех автомобилях (это для примера), чтобы их запустить, под капотом устанавливается аккумулятор, то есть, источник постоянного тока. Некоторые модели генераторов запускаются по принципу самовозбуждения или при помощи маломощных генераторов.
Схемa генерaторa переменного токa
Разновидности
В основе классификации заложен принцип действия, поэтому эти агрегаты переменного тока делятся на два класса:
- Асинхронные. Это самые надежные в работе, небольших размеров и веса, простых по конструкции генераторы. Они прекрасно справляются с перегрузками и коротким замыканием. Правда, необходимо учитывать, что данный вид сразу же выходит из строя, если на него будет действовать большая перегрузка. К примеру, пусковой ток электрооборудования. Поэтому стоит учитывать этот факт, для чего придется приобретать генератор мощностью большей раза в три или четыре, чем потребляемая мощность оборудования при запуске.
- Синхронные. А вот этот вид легко справляется с краткосрочными нагрузками. Такой генератор может выдержать перегруз раз в пять или шесть. Правда, высокой надежностью он не отличается по сравнению с асинхронным вариантов, к тому же он является обладателем больших размеров и массы.
Конечно, в данном разделении лежит принцип работы агрегата. Но есть и другие критерии.
- Однофазный.
- Двухфазный.
- Трехфазный.
- Многофазный (обычно шесть фаз).
- Сварочный.
- Линейный.
- Индукционный.
- Стационарный.
- Переносной.
Устройство трехфазного генератора
В принципе, устройство трехфазного генератора переменного тока достаточно простое. Это корпус с двумя крышками с противоположных сторон. В каждой из них проделаны отверстия для вентиляции. В крышках устроены ниши под подшипники, в которых вращается вал. На передний конец вала устанавливается передаточный элемент. К примеру, на автомобильном генераторе установлен шкив, с помощью которого вращение передается от двигателя внутреннего сгорания на генератор. На противоположном конце вала производится передача электрического тока, ведь вал в этом случае выступает как электромагнит с одной обмоткой.
Передача производится через графитовые щетки и токосъемные кольца (они из меди). Щетки соединены с электрорегулятором (по сути, это обычное реле), который регулирует подачу напряжение 12 вольт с требуемыми отклонениями. Самое важное, что реле не повышает и не понижает напряжение в зависимости от скорости вращения самого вала.
Так вот если говорить о трехфазных генераторах переменного тока, то это три вот таких однофазных. Только трехфазный агрегат имеет обмотку не на роторе (валу), а в статоре. И таких обмоток три, которые сдвинуты относительно друг друга по фазе. Вал, как и в первой конструкции, выполняет функции электромагнита, который питается через контакты скользящего типа постоянным током.
Вращение вала создает в обмотках магнитное поле. Электродвижущая сила начинает индуцироваться, когда происходит пересечение магнитного поля обмоток с ротором. А так как обмотки располагаются на статоре симметрично, то есть, через каждые 120º, то соответственно и электродвижущая сила будет иметь одинаковое амплитудное значение.
Как устроен генератор переменного тока — назначение и принцип действия
Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.
Превращение механической энергии в электрическую
Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.
Устройство и конструкция генератора переменного тока
Стандартный электрогенератор имеет следующие компоненты:
- Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
- Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
- Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
- Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.
В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:
- Ротор – подвижная цельная деталь из железа;
- Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.
Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:
- С подвижным якорем и статическим магнитным полем.
- С неподвижным якорем и вращающимся магнитным полем.
В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.
Схема генератора переменного тока
Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.
Классификация и виды агрегатов
Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.
По принципу работы
Разделяют асинхронные и синхронные генераторы переменного тока.
Асинхронный
У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.
Синхронный
Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.
По типу топлива двигателя
Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.
Газовый генератор
В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:
- Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
- Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
- Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
- Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.
Дизельный генератор
Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:
- Относительная дешевизна топлива;
- Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
- Высокий уровень противопожарной безопасности;
- В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
- Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.
Бензогенератор
Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:
- Малые габариты при высокой мощности;
- Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
- В случае перегрузки генератора автоматически срабатывает защита;
- Просты в обслуживании и ремонте;
- Во время работы не издают много шума;
- Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.
Короткозамкнутый и фазный ротор — в чем различие
Как вы знаете, асинхронные электродвигатели имеют трехфазную обмотку (три отдельные обмотки) статора, которая может формировать разное количество пар магнитных полюсов в зависимости от своей конструкции, что влияет в свою очередь на номинальные обороты двигателя при номинальной частоте питающего трехфазного напряжения. При этом роторы двигателей данного типа могут отличаться, и у асинхронных двигателей они бывают короткозамкнутыми или фазными. Чем отличается короткозамкнутый ротор от фазного ротора — об этом и пойдет речь в данной статье.
Короткозамкнутый ротор
Представления о явлении электромагнитной индукции подскажут нам, что произойдет с замкнутым витком проводника, помещенным во вращающееся магнитное поле, подобное магнитному полю статора асинхронного двигателя. Если поместить такой виток внутри статора, то когда ток на обмотку статора будет подан, в витке будет индуцироваться ЭДС, и появится ток, то есть картина примет вид: виток с током в магнитном поле. Тогда на такой виток (замкнутый контур) станет действовать пара сил Ампера, и виток начнет поворачиваться вслед за движением магнитного потока.
Так и работает асинхронный двигатель с короткозамкнутым ротором, только вместо витка на его роторе расположены медные или алюминиевые стержни, замкнутые накоротко между собой кольцами с торцов сердечника ротора. Ротор с такими короткозамкнутыми стержнями и называют короткозамкнутым или ротором типа «беличья клетка» поскольку расположенные на роторе стержни напоминают беличье колесо.
Проходящий по обмоткам статора переменный ток, порождающий вращающееся магнитное поле, наводит ток в замкнутых контурах «беличьей клетки», и весь ротор приходит во вращение, поскольку в каждый момент времени разные пары стержней ротора будут иметь различные индуцируемые токи: какие-то стержни — большие токи, какие-то — меньшие, в зависимости от положения тех или иных стержней относительно поля. И моменты никогда не будут уравновешивать ротор, поэтому он и будет вращаться, пока по обмоткам статора течет переменный ток.
К тому же стержни «беличьей клетки» немного наклонены по отношению к оси вращения — они не параллельны валу. Наклон сделан для того, чтобы момент вращения сохранялся постоянным и не пульсировал, кроме того наклон стержней позволяет снизить действие высших гармоник индуцируемых в стержнях ЭДС. Будь стержни без наклона — магнитное поле в роторе пульсировало бы.
Скольжение s
Для асинхронных двигателей всегда характерно скольжение s, возникающее из-за того, что синхронная частота вращающегося магнитного поля n1 статора выше реальной частоты вращения ротора n2.
Скольжение возникает потому, что индуцируемая в стержнях ЭДС может иметь место только при движении стержней относительно магнитного поля, то есть ротор всегда вынужден хоть немного, но отставать по скорости от магнитного поля статора. Величина скольжения равна s = (n1-n2)/n1.
Если бы ротор вращался с синхронной частотой магнитного поля статора, то в стержнях ротора не индуцировался бы ток, и ротор бы просто не стал вращаться. Поэтому ротор в асинхронном двигателе никогда не достигает синхронной частоты вращения магнитного поля статора, и всегда хоть чуть-чуть (даже если нагрузка на валу критически мала), но отстает по частоте вращения от частоты синхронной.
Скольжение s измеряется в процентах, и на холостом ходу практически приближается к 0, когда момент противодействия со стороны ротора почти отсутствует. При коротком замыкании (ротор застопорен) скольжение равно 1.
Вообще скольжение у асинхронных двигателей с короткозамкнутым ротором зависит от нагрузки и измеряется в процентах. Номинальное скольжение — это скольжение при номинальной механической нагрузке на валу в условиях, когда напряжение питания соответствует номиналу двигателя.
Другие статьи про асинхронные двигатели с короткозамкнутым ротором на Электрик Инфо:
Фазный ротор
Асинхронные двигатели с фазным ротором, в отличие от асинхронных двигателей с короткозамкнутым ротором, имеют на роторе полноценную трехфазную обмотку. Подобно тому, как на статоре уложена трехфазная обмотка, так же и в пазах фазного ротора уложена трехфазная обмотка.
Выводы обмотки фазного ротора присоединены к контактным кольцам, насаженным на вал, и изолированным друг от друга и от вала. Обмотка фазного ротора состоит из трех частей — каждая на свою фазу — которые чаще всего соединены по схеме «звезда».
К обмотке ротора через контактные кольца и щетки присоединяется регулировочный реостат. Краны и лифты, например, пускаются под нагрузкой, и здесь необходимо развивать существенный рабочий момент. Невзирая на усложненность конструкции, асинхронные двигатели с фазным ротором обладают лучшими регулировочными возможностями касательно рабочего момента на валу, чем асинхронные двигатели с короткозамкнутым ротором, которым требуется промышленный частотный преобразователь.
Обмотка статора асинхронного двигателя с фазным ротором выполняется аналогично тому, как и на статорах асинхронных двигателей с короткозамкнутым ротором, и аналогичным путем создает, в зависимости от количества катушек (три, шесть, девять или более катушек), два, четыре и т. д. полюсов. Катушки статора сдвинуты между собой на 120, 60, 40 и т. д. градусов. При этом на фазном роторе делается столько же полюсов, сколько и на статоре.
Регулируя ток в обмотках ротора, регулируют рабочий момент двигателя и величину скольжения. Когда регулировочный реостат полностью выведен, то для уменьшения износа щеток и колец их закорачивают при помощи специального приспособления для подъема щеток.
26. Конструкции роторов в трехфазных синхронных генераторах.
Синхронная машина имеет две основные части — ротор и статор, причем статор не отличается от статора асинхронной машины. Ротор синхронной машины представляет собой систему вращающихся электромагнитов, которые питаются постоянным током, поступающим в ротор через контактные кольца и щетки от внешнего источника. В обмотках статора под действием вращающегося магнитного поля ротора наводится ЭДС, которая подается на внешнюю цепь генератора (в режиме двигателя на обмотку статора подается напряжение сети). Такая конструкция генератора позволяет устранить скользящие контакты в цепи нагрузки генератора (обмотки статора непосредственно соединяются с нагрузкой) и надежно изолировать обмотки статора от корпуса машины, что существенно для мощных генераторов, работающих при высоких напряжениях.
Основной магнитный поток синхронного генератора, создаваемый вращающимся ротором, возбуждается посторонним источником-возбудителем, которым обычно является генератор постоянного тока небольшой мощности, установленный на общем валу с синхронным генератором. Постоянный ток от возбудителя подается на ротор через щетки и контактные кольца, установленные на валу ротора.
По своей конструкции роторы бывают явнополюсные (рис. 9.1, а) и неявнополюсные (рис. 9.1, б). Число пар полюсов ротора обусловлено скоростью его вращения.
У многополюсной синхронной машины ротор имеет р пар полюсов, а токи в обмотке статора образуют также р пар
полюсов вращающегося магнитного поля (как у асинхронной машины). Ротор должен вращаться с частотой вращения поля, следовательно, его синхронная скорость равна:
При стандартной частоте переменного тока 50 Гц частота вращения двухполюсной машины (р = 1) 3000 об/мин. С такой частотой вращаются современные турбогенераторы, состоящие из паровой турбины и синхронного генератора большой мощности с неявнополюсным ротором, который имеет одну пару полюсов. Неявнополюсный ротор такого генератора изготавливается из массивной стальной поковки. Обмотка постоянного тока расположена в пазах, выфрезерованных по всей его длине.
У гидрогенераторов первичным двигателем служит гидравлическая турбина, скорость вращения которой невелика (от 50 до 750 об/мин) и определяется высотой напора воды. В этом случае используются синхронные генераторы с явнопо-люсным ротором, имеющим от 4 до 60 пар полюсов.
Частота вращения дизель-генераторов, соединенных с первичным двигателем — дизелем, находится в пределах от 500 до 1500 об/мин. Обычно это явнополюсные машины небольшой мощности.
27. Самовозбуждение трехфазного синхронного генератора.
В маломощных синхронных генераторах обычно используется самовозбуждение: обмотка возбуждения питается выпрямленным током того же генератора (рис. 9.2).
Цепь возбуждения образуют трансформаторы тока ТТ, включенные в цепь нагрузки генератора, полупроводниковый выпрямитель, собранный по схеме трехфазного моста, и обмотка возбуждения генератора ОВ с регулировочным реостатом В .
Самовозбуждение генератора происходит следующим образом. В момент пуска генератора благодаря остаточной индукции в магнитной системе появляются слабые ЭДС и токи в рабочей обмотке генератора. Это приводит к появлению ЭДС во вторичных обмотках трансформаторов ТТ и небольшого тока в цепи возбуждения, усиливающего индукцию магнитного поля машины. ЭДС генератора возрастает до тех пор, пока магнитная система машины полностью не возбудится.
Для точной подгонки амплитуды ЭДС величину магнитного потока регулируют путем изменения тока в цепи возбуждения регулировочным реостатом. Форма ЭДС синхронного генератора должна быть синусоидальной. Синусоидальность ЭДС зависит прежде всего от распределения магнитной индукции в воздушном зазоре между статором и ротором. В явнополюсных машинах полюсным наконечникам ротора придают определенную форму (делают скосы по краям). При этом воздушный зазор постепенно увеличивается от середины полюса к его краям, а магнитная индукция распределяется по закону косинуса.
Однако такой способ получения синусоидальной ЭДС неприменим для машин с неявнополюсным ротором. В неяв-нополюсных машинах нужного распределения магнитной индукции добиваются путем особого размещения обмотки возбуждения на поверхности ротора. Эти и другие меры обеспечивают практически синусоидальную форму ЭДС.
Трехфазный генератор: общее устройство, принцип действия, симметричная система фазных ЭДС
Структура трехфазной цепи.
Тема 5. Трехфазные цепи.
Трехфазными генераторами называются генераторы переменного тока, одновременно вырабатывающие несколько ЭДС одинаковой частоты, но с различными начальными фазами. Совокупность таких ЭДС называется трехфазной системой ЭДС.
Многофазными цепями называются цепи переменного тока, в которых действуют многофазные системы ЭДС. Любая из цепей многофазной системы, где действует одна ЭДС, называется фазой.
Наибольшее распространение получили трехфазные системы. История их возникновения и развития связана с изобретением М.О. Доливо-Добровольским трехфазного асинхронного двигателя и трехфазного трансформатора.
Трехфазные системы имеют ряд преимуществ перед другими системами (однофазными и многофазными):
— они позволяют легко получить вращающееся магнитное поле (на этом основан принцип работы разных двигателей переменного тока).
— трехфазные системы наиболее экономичны, имеют высокий КПД.
— конструкция трехфазных двигателей, генераторов и трансформаторов наиболее проста, что обеспечивает их высокую надежность.
— один трехфазный генератор позволяет получать два различных (по величине) напряжения.
Современные электрические системы, состоящие из генераторов, электростанций, трансформаторов, линий передачи электроэнергии и распределительных сетей, представляют собой в подавляющем числе случаев трехфазные системы переменного тока.
Трехфазная система электрических цепей представляет собой совокупность электрических цепей, в которых действуют три синусоидальные ЭДС одной и той же частоты, сдвинутые друг относительно друга по фазе и создаваемые общим источником энергии. Каждая из цепей, входящих в трехфазную цепь, принято называть фазой. В данном случае не следует путать понятие фазы в многофазной системе с понятием начальной фазы синусоидальной величины.
В зависимости от числа фаз цепи бывают однофазные, двухфазные, трехфазные, шестифазные и т.д. Трехфазные цепи более экономичны чем однофазные.
Трехфазная цепь включает в себя источник (генератор) трехфазной ЭДС, проводники, потребители (приемники) трехфазной электрической энергии.
Рассмотрим устройство трехфазного генератора переменного тока. В пазах статора расположены три фазных обмотки (они условно представлены единственными витками). Начала и концы обмоток трехфазного генератора принято обозначать буквами и . Первыми буквами латинского алфавита обозначают начала обмоток, последними — концы. Началом обмотки называют зажим, через который ток поступает во внешнюю цепь при положительных его значениях.
Ротор генератора выполняется в виде вращающегося постоянного магнита или электромагнита, питаемого через скользящие контакты постоянным током.
При вращении ротора с помощью двигателя в обмотках статора возникают периодически изменяющиеся ЭДС, частота которых одинакова, но фазы в любой момент времени различны, так как различны положения обмоток в магнитном поле. ЭДС в неподвижных витках обмоток статора индуктируются в результате пересечения этих витков магнитным полем вращающегося ротора. Обмотки фаз генератора совершенно одинаковы и расположены симметрично по поверхности статора, поэтому ЭДС имеют одинаковые амплитудные значения, но сдвинутые друг относительно друга по фазе на угол 120 .
Если ЭДС фазы принять за исходную и считать ее начальную фазу равной нулю, то при вращении ротора с угловой скоростью против часовой стрелки выражения для мгновенных значений ЭДС можно записать следующим образом:
,
,
.
Переходя к комплексам действующих значений, получим:
,
Подобные системы ЭДС принято называть симметричными. Векторная диаграмма трехфазной симметричной системы ЭДС представляет собой симметричную трехлучевую звезду. Из векторной диаграммы следует, что
Если ЭДС фазы отстает от фазы , а ЭДС фазы отстает от ЭДС фазы , то такую последовательность фаз называют прямой. Обратную последовательность фаз можно получить, если изменить направление вращения ротора.
Если отдельные фазные обмотки генератора не соединены между собой электрически, то такую цепь называют несвязанной. По сути дела несвязанная трехфазная цепь состоит из трех независимых однофазных цепей. В противном случае трехфазная цепь называется связанной. Наибольшее распространение получили связанные трехфазные цепи, как наиболее экономичные, имеющие минимальное число проводов. При нормальном режиме работы трехфазных установок последовательность фаз принимается прямая.
| | следующая лекция ==> | |
Коэффициент мощности | | | Симметричные и несимметричные трехфазные цепи |
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник: