Условия ввода в параллельную работу синхронных генераторов
- 129. Параллельная работа синхронных генераторов
- Включение синхронного генератора на параллельную работу
- Включение синхронных генераторов на параллельную работу
- Параллельная работа генераторов
- Параллельная работа синхронных генераторов с сетью (стр. 1 )
- БЛОГ ЭЛЕКТРОМЕХАНИКА
- 04.10.2014
- Параллельная работа генераторов переменного тока
129. Параллельная работа синхронных генераторов
Для включения синхронного генератора на параллельную работу необходимо выполнить следующие условия:
1. Напряжение подключаемой машины должно быть равно напряжению сети или работающей машины.
2. Частота подключаемого генератора должна быть равна частоте сети.
3. Напряжения всех фаз подключаемой машины должны быть противоположны по фазе напряжениям соответствующих фаз сети или работающей машины.
4. Для подключения на параллельную работу трехфазного синхронного генератора необходимо также обеспечить одинаковое чередование фаз подключаемой машины и сети.
Подготовку к включению на параллельную работу синхронного генератора ведут следующим образом. Приводят во вращение первичный двигатель и регулируют его скорость вращения так, чтобы она была примерно равна номинальной. Затем возбуждают генератор и, следя за показаниями вольтметра, под-
ключенного к зажимам статора, регулируют напряжение машины при помощи реостата в цепи возбуждения до тех пор, пока оно не станет равным напряжению сети. Воздействуя на регулятор первичного двигателя и наблюдая за показаниями частотомера, устанавливают более точно скорость машины так, чтобы частота генератора была равна частоте сети. Тем самым первое и второе условия для включения на параллельную работу будут выполнены.
Для выполнения третьего условия, а также для установления полного равенства частот служат фазные лампы. Фазные лампы для машин однофазного тока включаются по двум схемам: на потухание (фиг. 255, а) и на горение (фиг. 255, б). При совпадении фаз сети и машины лампы, включенные по схеме а, погаснут, а по схеме б будут гореть полным накалом. В этот момент и нужно включить рубильник генератора.
Для машин трехфазного тока фазные лампы включаются также по двум схемам: на потухание (фиг. 256, а) и на вращение света (фиг. 256, б). Лампы, включенные по схеме а, при одинаковом чередовании фаз сети и машины будут сначала быстро и одновременно мигать, затем мигание их становится все реже и реже и, когда лампы медленно погаснут, нужно включить рубильник генератора.
Для более точного определения момента включения рубильника часто ставят так называемый нулевой вольтметр, имеющий двустороннюю шкалу.
При одинаковом чередовании фаз сети и машины лампы, включенные по схеме б, будут мигать поочередно, и если их расположить по кругу, то получится впечатление вращающегося света. Скорость вращения света зависит от разности частот. Генератор нужно включить в момент, когда лампы, включенные накрест, загорятся полным накалом, а третья лампа погаснет. Иначе говоря, рубильник удобнее включить в момент, когда меняется направление вращения света.
При неодинаковом порядке чередования фаз лампы, включенные по схеме а, дадут вращение света, а по схеме б будут одновременно загораться и потухать. Для изменения порядка чередования фаз машины два любых ее провода, подходящие к рубильнику, нужно поменять местами.
Включение фазных ламп высоковольтных генераторов осуществляется через измерительные трансформаторы напряжения (гл. четырнадцатая, 171).
Таким образом, с помощью фазных ламп мы можем определить противоположность фаз, установить равенство частот и порядок чередования фаз сети и подключаемой машины. Чередование фаз машины можно также определить, пользуясь особым прибором — фазоуказателем, представляющим собой небольшой асинхронный двигатель-Направление вращения диска фазоуказателя показывает порядок чередования фаз.
Когда синхронный генератор работает параллельно с сетью, скорость вращения его остается постоянной, равной синхронной.
Процесс подготовки генератора для включения его на параллельную работу называется синхронизацией.
В последние годы получил распространение метод включения синхронных генераторов на параллельную работу, называемый самосинхронизацией. Сущность этого метода заключается в следующем. Первичным двигателем разворачивают генератор и устанавливают приблизительно синхронную скорость. Замыкают обмотку возбуждения на дополнительное
сопротивление, равное 3—5-кратному значению ее сопро тивления. Включают рубильник, соединяющий генератор с сетью. Переключают обмотку возбуждения с дополнительного сопротивления к питающему ее источнику постоянного напряжения. После этого генератор сам входит в синхронизм.
Проделаем следующий опыт. В цепь статора синхронного генератора включим амперметр, ваттметр и фазометр. В цепь возбуждения генератора включим амперметр. Включим гене-
ратор на параллельную работу и дадим ему некоторую активную нагрузку. Увеличивая ток возбуждения при помощи реостата в цепи возбуждения, будем наблюдать показания приборов. Оказывается, что активная мощность, отдаваемая генератором в сеть, остается практически постоянной и во время опыта ваттметр будет давать неизменные показания. При неизменной активной нагрузке ток в цепи статора при некотором значении тока возбуждения получается минимальным. Это соответствует чисто активному току нагрузки генератора ( =1). Если к генератору подключить различные активные нагрузки, то каждому значению активной нагрузки будет соответствовать определенный ток возбуждения, при котором =1. При увеличении тока возбуждения сверх этого значения возникает отстающий реактивный ток. Фазометр будет показывать уменьшение и генератор будет отдавать в сеть отстающую реактивную мощность. Наоборот, если уменьшать ток возбуждения и сделать его меньшим указанного значения, то появится опережающий реактивный ток. Фазометр снова покажет уменьшение , и генератор будет для создания своего вращающегося поля потреблять из сети отстающую реактивную мощность.
Зависимость тока статора (якоря) синхронного генератора от тока возбуждения при постоянной активной мощности называется U-образной характеристикой машины, получившей свое название за внешний вид кривой, напоминающей букву U. На фиг. 257 показана U-образная характеристика синхронного генератора.
Включение синхронного генератора на параллельную работу
Существуют два способа включения синхронного генератора на параллельную работу с сетью: и .
При включении синхронного генератора на параллельную работу с сетью по способу точной синхронизации стремятся к тому, чтобы при включении не возникало больших бросков тока. Большие толчки тока вызывают большие моменты, действующие как на ротор, так и на статор, и силы, которые могут привести к разрушению обмотки статора.
Для того чтобы исключить броски тока при включении генератора, необходимо выполнить следующие условия:
2) равенство частот генератора Г и сети ;
3) ЭДС генератора и напряжение сети С должны находиться в противофазе;
4) чередование фаз ЭДС генератора и напряжения сети должно быть одинаковым (для трехфазных генераторов).
Рис. 1. Схема включения однофазного генератора на параллельную работу с сетью (а) и векторная диаграмма для — момента включения, (б). Лампы синхроноскопа включены по схеме на потухание света
На рис. 1, а представлена схема включения однофазного генератора на параллельную работу. При включении генератора GS на параллельную работу выполнение первого условия проверяется по вольтметрам, включенным в сеть и на выводы генератора. Равенства =C добиваются путем регулирования тока возбуждения генератора
Остальные условия проверяются с помощью специальных приборов, называемых синхроноскопами. Простейшим синхроноскопом является ламповый. На рис. 1, а показана одна из возможных схем включения лампового синхроноскопа для однофазного синхронного генератора. На этой схеме лампы включаются соответственно между точками и .
При отключенном выключателе генератор работает в режиме холостого хода (==C) и между контактами выключателя действует ЭДС . Если бы скорость подключаемого генератора была постоянной и равной номинальной, то частота индуцируемой ЭДС равнялась бы частоте сети и векторы и C вращались бы с одинаковой скоростью, a . В действительности получить строго постоянную скорость генератора не удается и частоты сети и генератора несколько отличаются. Поэтому векторы и C будут перемещаться относительно друг друга со скоростью . Вследствие этого будет изменяться от 0 до 2C, и соответственно этому изменяется напряжение на лампах: они одновременно будут то загораться, то гаснуть.
Наиболее благоприятным моментом для включения генератора в сеть будет момент времени, когда и лампы погаснут. В этом случае оба вектора расположатся, как показано на рис. 1,6, т. е. они будут находиться в противофазе ( =- C). Если включение произведено при , то ток у подключенного генератора будет также равен нулю. Включение ламп, показанное на рис. 1, а, называется «включением на потухание». На практике при включении генератора на параллельную работу с сетью регулируют скорость его двигателя и добиваются, чтобы промежутки времени между следующими друг за другом погасаниями ламп были достаточно большими, чтобы успеть включить генератор на параллельную работу.
Для трехфазных генераторов применяются две схемы включения ламп: на потухание (рис. 2, а) и на вращение света (рис. 2, б).
Рассмотрим первую схему (рис. 2, а). Здесь лампы включены между точками , и , каждая пара которых относится к одной фазе. В момент включения выключателя напряжения между этими точками должны быть равны нулю и все три лампы должны погаснуть. При этом напряжение C и ЭДС для каждой фазы действуют навстречу друг другу, т. е. они находятся в противофазе, как это показано на векторной диаграмме рис. 3.
Во второй схеме (рис. 2, б) одна из ламп подключается к точкам одной фазы , а две другие лампы — между точками разных фаз и . В этой схеме до включения выключателя лампы будут попеременно загораться и гаснуть. Это будет происходить из-за взаимного перемещения векторов напряжения C и ЭДС вызванного несовпадением их частот. Включение выключателя должно быть произведено, когда одна лампа (между А’-А») погаснет, а две другие лампы будут гореть с одинаковым накалом (рис.4). Перед включением выключателя следует добиться, чтобы вращение света происходило с небольшой скоростью, что достигается регулированием скорости приводного двигателя.
Рис. 2. Схема включения трехфазного синхронного генератора на параллельную работу с сетью. Лампы синхроноскопа включены по схеме на потухание света (а) и на вращение света (б)
Лампы гаснут при напряжениях, равных 30—60 % их номинального напряжения, поэтому, для того чтобы более точно выбрать момент включения выключателя как в одной, так и в другой схеме, параллельно лампе 1 между точками включают так называемый нулевой вольтметр.
Рис. 3. Векторная диаграмма напряжений сети С и ЭДС генератора г для момента времени включения генератора на параллельную работу с сетью | Рис. 4. Напряжение на лампах синхроноскопа при включении его .на вращение света в момент замыкания выключателя (см. рис. 2, б): 2 — напряжение на лампе 2; 3 — напряжение на лампе 3 |
Стрелка этого вольтметра при медленных колебаниях, соответствующих потуханию и загоранию ламп, покажет нуль, когда напряжение между точками А’-A» равно нулю. Очевидно, что на шкале такого прибора достаточно отметить только одно нулевое значение.
С помощью лампового синхроноскопа можно определить соответствие порядка чередования фаз сети и генератора. Если при схеме включения ламп по рис. 2, а будет наблюдаться вращение света, а при схеме по рис. 2, б — одновременное загорание и погасание ламп, то это будет означать, что сеть и генератор имеют разный порядок чередования фаз. Изменить порядок чередования фаз сети или генератора можно путем переключения двух фаз между собой.
Для мощных генераторов пользуются электромагнитным синхроноскопом, к которому подаются напряжения генератора и сети. Этот прибор работает на принципе вращающегося магнитного поля, и при его стрелка вращается с частотой в ту или иную сторону в зависимости от того, какая частота больше. При правильном моменте включения стрелка синхроноскопа обращена вертикально верх..
При высоком напряжении приборы синхронизации включаются через трансформаторы напряжения. При этом необходимо позаботиться о том, чтобы фазировка (чередование фаз) этих трансформаторов была правильной.
Синхронизация генераторов является весьма ответственной операцией и требует от эксплуатационного персонала большого внимания. В особенности это важно в случае различных аварий, когда персонал работает в напряженной обстановке. В то же время именно при авариях необходима максимальная оперативность в производстве различных переключений и в синхронизации резервных или отключившихся во время аварий генераторов. Опыт показывает, что наибольшее число ошибочных действий персонала падает как раз на период аварий.
Для исключения ошибок персонала и облегчения его работы пользуются автоматическими синхронизаторами, которые осуществляют автоматическое регулирование и синхронизируемых генераторов в нужных направлениях и при достижении необходимых условий автоматически включают генераторы на параллельную работу. Однако подобные автоматические синхронизаторы также обладают недостатками (сложность, необходимость непрерывного и квалифицированного обслуживания и т. д.). К тому же во время аварий напряжение и частота в системе нередко беспрерывно и быстро меняются и поэтому процесс синхронизации с помощью автоматических синхронизаторов сильно затягивается (до 5—10 мин и даже более), что с точки зрения ликвидации аварии крайне нежелательно.
Для ускорения включения применяют способ самосинхронизации. Сущность метода самосинхронизации заключается в том, что генератор включается в сеть в невозбужденном состоянии при скорости вращения, близкой к синхронной (допускается отклонение до При этом отпадает необходимость в точном выравнивании частот, значения и фазы напряжений, благодаря чему процесс синхронизации предельно упрощается и возможность ошибочных действий исключается. После включения невозбужденного генератора в сеть немедленно включается ток возбуждения, и генератор втягивается в синхронизм (т. е. его скорость достигает синхронной).
При самосинхронизации неизбежно возникновение значительного толчка тока, так как включение невозбужденного генератора в сеть с напряжением эквивалентно внезапному короткому замыканию этого генератора при работе на холостом ходу с .Однако толчок тока при самосинхронизации будет все же меньше, так как, кроме сопротивления генератора, в цепи будут действовать также сопротивления элементов сети (повышающие трансформаторы, линия и т. д.).
Рис. 5. Кривые изменения токов турбогенератора мощностью 100 МВт при включении в сеть методом самосинхронизации
Включение синхронных генераторов на параллельную работу
Включение синхронных машин в сеть на параллельную работу производят — способом точной синхронизации и способом грубой синхронизации, который для генераторов обычно называют способом самосинхронизации. Иногда для синхронных машин применяют также частотный пуск, а для генераторов и несинхронное включение
Способ точной синхронизации. Этот способ используют при включении в сеть синхронных генераторов. Он состоит в том, что генератор сначала разворачивают турбиной до частоты вращения, близкой к синхронной, а затем возбуждают и при определенных условиях включают в сеть. Условиями, необходимыми для включения машины, являются:
1) равенство напряжений включаемого генератора и работающего генератора или сети;
2) совпадение фаз этих напряжений;
3) равенство частот включаемого генератора и работающего генератора или сети.
Первое условие обеспечивается путем регулирования тока возбуждения машины, а для выполнения второго и третьего условий необходимо изменение вращающего момента на ее валу, что достигается изменением количества пара или воды, пропускаемых через турбину.
Выполнение условий точной синхронизации может быть осуществлено вручную или автоматически. При ручной синхронизации все операции по регулированию возбуждения и подгонке частоты выполняет дежурный персонал, а при автоматической синхронизации — автоматические устройства. Применяется также ручная синхронизация с автоматическим контролем синхронизма, который запрещает включение выключателя синхронизируемой машины при несоблюдении условий синхронизации. При точной ручной синхронизации напряжения и частоты контролируют по установленным на щите управления двум вольтметрам и двум частотомерам, а сдвиг по фазе напряжений — по синхроноскопу; последний позволяет не только уловить момент совпадения фаз напряжений, но также определить, вращается ли включаемый генератор быстрее или медленнее, чем работающие. Указанные приборы объединяют в так называемую «колонку синхронизации». Вольтметр и частотомер, относящиеся к синхронизируемому генератору, подключают к его трансформатору напряжения, а вольтметр и частотомер, относящиеся к работающим генераторам (или сети), обычно подключают к трансформатору напряжения сборных шин станции. Синхроноскоп подключают одновременно к обоим трансформаторам напряжения.
При соблюдении всех вышеуказанных условий разность напряжений генератора и сети равна нулю, поэтому уравнительного тока между включенным и другими генераторами не возникает. Точной ручной синхронизации свойственны следующие недостатки:
1) сложность процесса включения из-за необходимости подгонки напряжения по модулю и фазе, а также частоты генератора;
2) большая длительность включения — от нескольких минут в нормальном режиме до нескольких десятков минут при авариях в системе, сопровождающихся изменением частоты и напряжения, когда особенно важно обеспечить быстрое включение генератора в сеть;
3) возможность механических повреждений генератора и первичного двигателя при включении агрегата с большим углом опережения.
Способ самосинхронизации. Он исключает необходимость точной подгонки частоты и фазы напряжения включаемой синхронной машины. Последнюю разворачивают до частоты вращения, незначительно отличающейся от синхронной (с точностью до нескольких процентов), и невозбуждённой включают в сеть. При этом обмотку возбуждения замыкают на разрядный резистор, используемый при гашении поля, либо на специально предусмотренный для этой цели резистор, либо на якорь возбудителя, чтобы избежать появления в обмотке возбуждения напряжений, опасных для ее изоляции. После включения генератора в сеть подаётся импульс на включение АГП и машина возбуждается.
В момент включения невозбуждённой синхронной машины в сеть имеет место бросок тока статора и снижение напряжения в сети. Однако ток и соответствующая электродинамическая сила (она пропорциональна квадрату тока) меньше, чем при КЗ на выводах генератора. Это объясняется тем, что ток статора в момент включения определяется только напряжением сети Uc (так как генератор не возбуждён и его ЭДС равна нулю), которое меньше ЭДС нормального режима, и суммарными сопротивлениями Х»dΣ и XqΣ “ , кторые больше соответствующих сопротивлений генератора X»d и X»q за счет сопротивлений сети. Кроме того, при самосинхронизации затухание свободных периодических составляющих тока происходит быстрее, чем при КЗ, так как в первом случае ротор замкнут на разрядный резистор. Поэтому даже ошибочное включение машины в сеть с большим скольжением, когда продолжительность действия повышенных токов достаточно велика, не представляет опасности.
Испытания показали, что обмотка статора в механическом отношении не реагирует на первый пик тока включения; деформация достигает наибольшего значения только спустя несколько периодов после включения. Учитывая также быстрое затухание свободной сверхпереходной составляющей тока статора, можно при оценке допустимости самосинхронизации начальное значение периодической составляющей тока Iп0 и напряжение U на выводах генератора определять по переходному сопротивлению:
.
Электродинамические силы, воздействующие при самосинхронизации на обмотку статора неявнополюсных машин, больше, чем явнополюсных, так как неявнополюсные машины имеют относительно большие полюсные деле ния, большие вылеты лобовых соединений обмотки статора и меньшие индуктивные сопротивления (определяющие начальное значение тока включения), чем явнополюсные машины.
Магнитный поток, создаваемый током статора, наводит в роторе ток, вследствие чего в машине возникает соответствующий магнитный поток ротора. Взаимодействие указанных магнитных потоков приводит к создан электромагнитного вращающего момента. Наибольшую опасность для машины представляет знакопеременный вращащий момент, возникающий в первые периоды времени после включения возбужденной машины в сеть. Наибольшее значение этого момента равно:
,
т. е. оно тем меньше, чем больше противление сети Хс и чем меньше разница между Х ” dΣ и Х ” qΣ. Поэтому турбогенераторы с массивным ротором и явнополюсные машины с демпферными обмотками по обеим осям на роторе подвергаются меньшему воздействию знакопеременных моментов вращения, чем явнополюсные машины без демпферных обмоток. В общем случае Хс≠0, поэтому в момент включения невозбуждённой синхронной машины в сеть она подвергается меньшему воздействию вращающих моментов, чем при трёхфазном КЗ, в то время как в случае ошибочного включения возбужденной машины в сеть вращающие моменты могут в несколько раз превышать моменты при трёхфазном КЗ.
Моменты, возникающие в машине при самосинхронизации, с одной стороны воспринимаются конструктивными элементами, которые крепят активную сталь к корпусу и корпус статора к фундаменту, а с другой — передаются на вал первичного двигателя. Момент, воспринимаемый первичным двигателем, приближенно равен отношению его момента инерции к моменту инерции всего агрегата. Это отношение у гидрогенераторов меньше, чем у турбогенераторов, и составляет 0,05 — 0,1.
В установившемся асинхронном режиме при постоянном скольжении машины момент состоит из знакопеременных составляющих, изменяющихся с двойной частотой скольжения, и постоянных составляющих. Знакопеременные составляющие момента оказывают влияние на вхождение машины в синхронизм только при малых скольжениях (s≤1,0 %), а при больших скольжениях работа, обусловленная этими составляющими, практически равна нулю. При синхронной частоте вращения (s=0) эти составляющие превращаются в реактивную составляющую вращающего момента, обусловленную явнополюсностью машины (XdΣ≠XqΣ):
,
где δ — фаза включения.
Постоянная составляющая момента определяет средний асинхронный вращающий момент
,
который оказывает основное влияние на процесс вхождения генератора в синхронизм; при синхронной частоте вращения этот момент становится равным нулю. Чем больше средний асинхронный вращающий момент, тем легче машина, включаемая в сеть с некоторым скольжением, приближается к синхронной частоте вращения. Далее за счет реактивного момента и синхронного момента, обусловленного возбуждением,
,
где δ — угол между векторами Eq и Uс, машина втягивается в синхронизм.
Наибольший асинхронный момент воздействует на турбогенераторы, имеющие массивный ротор, а наименьший — на гидрогенераторы без демпферных обмоток. Турбогенераторы даже при включении с большими скольжениями (15 — 20%) входят в синхронизм за 2 — 3 с.
Преимуществами метода самосинхронизации являются:
значительное упрощение операции включения, которое позволяет применить несложную систему автоматизации процесса;
быстрое включение машины в сеть, что особенно важно при аварии в системе;
возможность включения машин во время глубоких снижений напряжения и частоты сети, имеющих место при авариях в системе; отсутствие опасности повреждения машины.
Понижение напряжения, возникающее при включении невозбуждённой машины в сеть, может быть значительным, если мощность включаемой машины соизмерима с мощностью системы или превосходит ее. Тем не менее, этот факт не может служить препятствием для включения машин методом само синхронизации, так как напряжение быстро восстанавливается (примерно через 1—2 с).
В настоящее время для машин мощностью до 3000 кВт включительно самосинхронизация является основным способом включения на параллельную работу. Возможность использования этого способа для включения машин мощностью более 3000 кВт ограничена допускаемым значением электродинамических сил в обмотке статора.
Включение машин с косвенным охлаждением методом самосинхронизации рекомендуется в тех случаях, когда переходная составляющая тока статора в момент включения не превосходит 3,5-кратного значения номинального тока статора. Этому условию удовлетворяют практически все гидрогенераторы и турбогенераторы с косвенным охлаждением, работающие по схеме блока с повышающими трансформаторами.
Включение методом самосинхронизации генераторов с непосредственным охлаждением обмоток допускается только в аварийных условиях. При работе нескольких генераторов на шины генераторного напряжения способ самосинхронизации не всегда применим; он допускается только в тех случаях, когда выполняется требование: Iп0 ≤ 3,5Iном.
В аварийных случаях методом самосинхронизации допускается включать все машины независимо от кратности тока включения и способа их охлаждения.
Параллельная работа генераторов
На электрических станциях всегда устанавливают несколько турбо- или гидроагрегатов, которые работают совместно в параллельном соединении на общие шины генераторного или повышенного напряжения.
В результате этого выработка электроэнергии на электростанциях производится несколькими параллельно работающими генераторами и такая совместная их работа имеет много ценных преимуществ.
Параллельная работа генераторов:
1. повышает гибкость эксплуатации оборудования электростанций и подстанций, облегчает проведение планово-предупредительных ремонтов генераторов, основного оборудования и соответствующих РУ при минимуме необходимого резерва.
2. повышает экономичность работы электростанции, так как дает возможность распределять наиболее рационально суточный график нагрузки между агрегатами, чем достигается наилучшее использование мощности и повышается к. п. д.; на ГЭС дает возможность наиболее полно использовать мощность водяного потока в период паводков и летней и зимней межени;
3. повышает надежность и бесперебойность работы электростанций и электроснабжения потребителей.
Рис. 1. Принципиальная схема параллельной работы генераторов
Для увеличения производства и улучшения распределения электроэнергии многие электростанции объединяются для параллельной работы в мощные энергетические системы.
В нормальном режиме эксплуатации генераторы присоединены на общие шины (генераторного или повышенного напряжения) и вращаются синхронно. Их роторы вращаются с одинаковой угловой электрической скоростью
При параллельной работе мгновенные значения напряжений на выводах обоих генераторов должны быть равны по величине и обратны по знаку.
Для подключения генератора на параллельную работу с другим генератором (или с сетью) нужно произвести его синхронизацию, т. е. отрегулировать скорость вращения и возбуждение подключаемого генератора в соответствии с работающим.
Генераторы, работающий и включаемый на параллельную работу, должны быть сфазированы, т. е. иметь одинаковый порядок чередования фаз.
Как видно из рис. 1, при параллельной работе генераторы по отношению друг к другу включены навстречу, т. е. их напряжения U1 и U2 на выключателе будут прямо противоположны. По отношению же к нагрузке генераторы работают согласно, т. е. их напряжения U1 и U2 совпадают. Эти условия параллельной работы генераторов отражены на диаграммах рис. 2.
Рис. 2. Условия включения генераторов на параллельную работу. Напряжения генераторов равны по величине и противоположны по фазе.
Существуют два метода синхронизации генераторов: точная синхронизация и грубая синхронизация, или самосинхронизация.
Условия точной синхронизации генераторов.
При точной синхронизации возбужденный генератор подключают к сети (шинам) выключателем В (рис. 1) при достижении условий синхронизма — равенства мгновенных значений их напряжений U1 = U2
При раздельной работе генераторов их мгновенные фазные напряжения будут соответственно равны:
Отсюда вытекают условия, необходимые для параллельного включения генераторов. Для включаемого и работающего генераторов требуется:
1. равенство действующих значений напряжений U1 = U2
2. равенство угловых частот ω1 = ω2 или f1 = f2
3. совпадение напряжений по фазе ψ1 = ψ2 или Θ= ψ1 -ψ2 =0.
Точное выполнение этих требований создает идеальные условия, которые характеризуются тем, что в момент включения генератора уравнительный ток статора будет равен нулю. Однако следует отметить, что выполнение условий точной синхронизации требует тщательной подгонки сравниваемых величин напряжения частоты и фазных углов напряжения генераторов.
В связи с этим на практике невозможно полностью выполнить идеальные условия синхронизации; они выполняются приближенно, с некоторыми небольшими отклонениями. При невыполнении одного из указанных выше условий, когда U2, на выводах разомкнутого выключателя связи В будет действовать разность напряжений:
Рис. 3. Векторные диаграммы для случаев отклонения от условий точной синхронизации: а — Действующие напряжения генераторов не равны; б — угловые частоты не равны.
При включении выключателя под действием этой разности потенциалов в цепи потечет уравнительный ток, периодическая составляющая которого в начальный момент будет
Рассмотрим два случая отклонения от условий точной синхронизации, показанные на диаграмме (рис. 3):
1. действующие напряжения генераторов U1 и U2 не равны, остальные условия соблюдаются;
2. генераторы имеют одинаковые напряжения, но вращаются с разными скоростями, т. е. их угловые частоты ω1 и ω2 не равны, и имеет место несовпадение напряжений по фазе.
Как видно из диаграммы на рис. 3, а, неравенство действующих значений напряжений U1 и U2 обусловливает возникновение уравнительного тока I”ур, который будет почти чисто индуктивным, так как активные сопротивления генераторов и соединительных проводников сети весьма малы и ими пренебрегают. Этот ток не создает толчков активной мощности, а, следовательно, и механических напряжений в деталях генератора и турбины. В связи с этим при включении генераторов на параллельную работу разность напряжений может быть допущена до 5—10%, а в аварийных случаях — до 20%.
При равенстве действующих значений напряжений U1 = U2, но при расхождении угловых частот Δω=ω1 – ω2 ≠ 0 или Δf=f1 – f2 ≠ 0 происходит смещение векторов напряжений генераторов и сети (или 2-го генератора) на некоторый угол Θ, меняющийся во времени. Напряжения генераторов U1 и U2 в рассматриваемом случае будут отличаться по фазе не на угол 180°, а на угол 180°—Θ (рис. 3, б).
На выводах разомкнутого выключателя В, между точками а и б, будет действовать разность напряжений ΔU. Как и в предыдущем случае, наличие напряжения может быть установлено при помощи электрической лампочки, а действующую величину этого напряжения можно измерить вольтметром, включенным между точками а и б.
Если замкнуть выключатель В, то под действием разности напряжений ΔU возникает уравнительный ток I”ур, который в отношении U2 будет почти чисто активным и при включении генераторов на параллельную работу вызовет сотрясения и механические напряжения в валах и других деталях генератора и турбины.
При ω1 ≠ ω2 синхронизация получается вполне удовлетворительной, если скольжение s0
Вследствие инерционности регуляторов турбины нельзя осуществить длительное равенство угловых частот ω1 = ω2, и угол Θ между векторами напряжений, характеризующий относительное положение обмоток статора и ротора генераторов, не остается постоянным, а непрерывно меняется; его мгновенное значение будет Θ=Δωt.
На векторной диаграмме (рис. 4) последнее обстоятельство выразится в том, что с изменением угла сдвига фаз в между векторами напряжений U1 и U2 будет также изменяться ΔU. Разность напряжений при этом ΔU называется напряжением биений.
Рис. 4. Векторная диаграмма синхронизации генераторов при неравенстве частот.
Мгновенное значение напряжений биений Δu представляет собой разность мгновенных значений напряжений u1 и u2 генераторов (рис. 5).
Предположим, что достигнуто равенство действующих значений U1=U2, фазные углы начала отсчета времени ψ1 и ψ2 тоже равны.
Тогда можно написать
Кривая изменения напряжения биений показана на рис.5.
Напряжение биений гармонически изменяется с частотой, равной полусумме сравниваемых частот, и с амплитудой, изменяющейся во времени в зависимости от угла сдвига фаз Θ:
Из векторной диаграммы рис. 4 для некоторого определенного значения угла Θ можно найти действующее значение напряжения биений:
Рис. 5. Кривые напряжения биений.
Учитывая изменение угла Θ с течением времени, можно написать выражение для огибающей по амплитудам напряжения биений, которое дает изменение амплитуд напряжения во времени (пунктирная кривая на рис. 5, б):
Как видно из векторной диаграммы на рис. 4 и последнего уравнения, амплитуда напряжения биений ΔU изменяется от 0 до 2Um. Наибольшая величина ΔU будет в тот момент, когда векторы напряжения U1 и U2 (рис. 4) совпадут по фазе и угол Θ = π, а наименьшая — когда эти напряжения будут отличаться по фазе на 180° и угол Θ = 0. Период кривой биений равен
При включении генератора на параллельную работу с мощной системой значение хс системы мало и им можно пренебречь (хс ≈ 0), тогда уравнительный ток
В случае неблагоприятного включения в момент Θ = π ударный ток в обмотке статора включаемого генератора может достигнуть двойного значения ударного тока трехфазного короткого замыкания на выводах генератора.
Активная составляющая уравнительного тока, как видно из векторной диаграммы на рис. 4, равна
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Параллельная работа синхронных генераторов с сетью (стр. 1 )
Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННЫХ ГЕНЕРАТОРОВ С СЕТЬЮ
15.1. Особенности параллельной работы синхронных генераторов
В настоящее время электроэнергетические системы состоят из параллельно работающих электрических станций, соединенных линиями электропередачи, что повышает надежность электроснаб жения потребителей по сравнению с автономным электроснаб жением. Кроме того, при этом уменьшается установленная мощ ность электрических станций при неизменной мощности нагрузки и увеличивается экономичность за счет возможности включения (отключения) отдельных генераторов и целых электростанций в случае изменения нагрузки в системе и т. д.
При параллельной работе с общей электрической сетью мощ ности отдельных синхронных генераторов по сравнению с общей мощностью энергосистемы незначительны. Поэтому при любых изменениях режима работы отдельного генератора, включенного в энергосистему, ее напряжение и частота f с остаются практич ески неизменными и поддерживаются всеми остальными генер аторами.
В дальнейшем при рассмотрении параллельной работы син хронного генератора с сетью будем исходить из условия, что = const , f с = const .
15.2. Способы включения синхронного генератора на
параллельную работу с сетью
Процесс включения синхронного генератора на параллельную ра боту с сетью называется синхронизацией. При этом различают точную синхронизацию и самосинхронизацию (или грубую синхрон изацию). При включении генератора в сеть не должны возникать большие толчки тока, так как они вызывают большие моменты, действующие как на ротор, так и на статор, и значительные электродинамические силы, которые могут привести к повреждению обмоток.
Принципиальная схема синхронизации трехфазных генераторов приведена на рис. 15.1, а соответствующая ей расчетная электрическая схема для одной фазы — на рис. 15.2.
Рис. 15.1. Схема включения трехфазного синхронного генератора на параллельную работу с сетью (ламповый синхроноскоп включен при этом на потухание света)
Рис. 15.2. Электрическая схема для расчета тока I c (одной фазы)
При замыкании рубильника (Р) в схеме на рис. 15.1 ток синхронизации I с (см. рис. 15.2) определяется по формуле
(15.1)
где Ė Г ,Ė с — ЭДС (на пряжения) генератора и сети со ответственно; Z а — полное со противление обмотки якоря ге нератора.
Чтобы ток İ с был равен нулю (в контуре Е Г — Е с на рис. 15.2), необходимо выполнение следу ющих условий:
1. ЭДС генератора Ė Г и сети Ė с должны быть равны по зна чению и находиться в противо фазе.
2. Частота генератора f Г и ча стота сети fc должны быть рав ны, иначе после синхрониза ции синхронный генератор бу дет работать в режиме асинх ронного двигателя (при f Г f с ) или асинхронного генератора (при f Г > f с ).
3. Порядок чередования фаз генератора и сети должен быть одинаковым, иначе после син хронизации ротор генератора будет вращаться с синхронной ско ростью против направления вращения магнитного поля, т. е. бу дет работать в режиме электромагнитного тормоза со скольжением s = 2 .
Перечисленные условия являются условиями точной синхро низации.
Выполнение условий синхронизации проверяется следующим образом (см. рис. 15.1). При отключенном рубильнике (Р) син хронный генератор (СГ) работает в режиме холостого хода, при этом между контак тами рубильника действует ЭДС ΔĖ = ĖГ -Ėс = Ė10- Ėс. Регули рованием тока возбуждения генератора тока возбуждения генератора добиваются равенства ЭДС Е г и Е с , контролируя их значения с помощью вольтметров V г и V c .
Если бы частота вращения генератора была постоянной и равной номинальной, то частота индуктируемой ЭДС равнялась бы частоте напряжения сети и векторы Ė 10 и Ė c вращались с одинаковой угловой частотой, а ΔĖ была бы постоянной.
В действительности получить строго постоянную частоту вращения генератора не удается и частоты ЭДС сети и генератора несколько отличаются. Поэтому векторы Ė 10 и Ė c перемещаются относительно друг друга с угловой частотой ω=2π( f г – f c ).
Вследствие этого ΔЕ изменяется от нуля до значения, равного сумме Ė 10 + Ė c и соответственно этому изменяется напряжение в трех лампах, которые одновременно то загораются, то гаснут. Наиболее благоприятным для включениия генератора в сеть является момент, когда ΔЕ=0, что соответствует выполнению первого условия точной синхронизации. Однако лампы накаливания гаснут при напряжениях, равных 30. 60% от номинальных значений. Поэтому, для того чтобы более точно определить момент выполнения первого условия синхронизации, параллельно одной из них включают так называемый нулевой вольтметр V 0 . В момент выполнения первого условия показания этого вольтметра равны нулю и лампы не горят. Если в этот момент замкнуть рубильник Р, ток в подключенном к сети генераторе будет равен нулю. Включение ламп по схеме, приведенной на рис. 15.1, называется включением на потухание света.
Возможна другая схема соединения трех ламп: одна из них подключается к одноименным фазам генератора и сети, а две другие — к разноименным фазам. При такой схеме включения, называемой включением на вращение света, лампы будут попеременно загораться и гаснуть. Вместе эти три лампы образуют ламповый синхроноскоп.
В настоящее время вместо ламповых применяются более сложные синхроноскопы, позволяющие полностью автоматизировать процесс синхронизации.
Частоту генератора в процессе синхронизации регулируют изменением скорости вращения его первичного (приводного) двигателя. Если частоты генератора и сети совпадают, то лампы син-хроноскопа не мигают, поскольку ΔĖ = const . Таким образом, с помощью лампового синхроноскопа проверяют выполнение второго условия точной синхронизации.
С помощью лампового синхроноскопа проверяют и третье условие точной синхронизации — одинаковость порядка чередования фаз сети и генератора. Если при схеме включения ламп, приведенной на рис. 15.1, будет наблюдаться вращение, а не потухание света, то это будет означать, что сеть и генератор имеют разный порядок чередования фаз, который в этом случае необходимо изменить, что достигается путем переключения двух фаз либо сети, либо генератора.
Для применения метода точной синхронизации требуется довольно много времени (до 10 мин). В ряде случаев при резком увеличении нагрузки в электрической системе этого времени в распоряжении персонала электрической станции может не оказаться. Тогда для ускорения включения генератора в сеть применяют способ самосинхронизации, при котором требуется выполнить лишь последние два условия точной синхронизации:
одинаковый порядок чередования фаз генератора и сети;
примерно равные частоты генератора и сети ( f г ≈ f с ).
Соблюдение условия чередования фаз обычно проверяется при монтаже генератора, а следовательно, выполняется на электрической станции автоматически. Время разгона генератора, определяемое постоянной инерции блока приводной двигатель — генератор, достаточно мало. Поскольку равенство частот должно соблюдаться приближенно, то возможны два варианта включения на параллельную работу сети и генератора: f г f с и f г > f с . В первом случае после включения синхронный генератор начинает работать параллельно с сетью в режиме асинхронного двигателя, а во втором — в режиме асинхронного генератора.
Как уже указывалось, самосинхронизация применяется при внезапном увеличении нагрузки в системе для быстрой компенсации дефицита активной мощности в электрической системе. Следовательно, при работе в режиме асинхронного двигателя этот дефицит будет возрастать, так как двигатель будет дополнительно потреблять активную мощность. Значит, желательно осуществлять включение синхронного генератора на параллельную работу при f г f с.
При самосинхронизации генератор включают в сеть невозбужденным (Ег=0), поэтому включение сопровождается скачком тока, установившееся значение которого
I c = Е с / z a = U c /z a . (15.2)
Скачок тока якоря приводит к броску потока якоря и ЭДС, наводимой в обмотке возбуждения. Чтобы избежать возникновения перенапряжений и возможного в связи с этим электрического пробоя, обмотку возбуждения на период включения генератора замыкают на балластное активное сопротивление r б = (4. 6) r в , где r в — активное сопротивление обмотки возбуждения. Часто в качестве балластного используют дугогасительное сопротивление. После установления тока якоря обмотку возбуждения переключают с активного сопротивления на источник постоянного тока и плавно увеличивают ток возбуждения. Таким образом генератор втягивается в синхронизм и работает параллельно с сетью. Далее путем увеличения мощности приводного двигателя увеличивают активную мощность генератора до требуемого значения.
15.3. Регулирование активной мощности . Угловые характеристики активной мощности
Активную мощность генератора, работающего параллельно с сетью, при принятых допущениях ( = const , f с = const ) можно регулировать посредством изменения вращающего момента на его валу. Изменение вращающего момента достигается воздействием на двигатель, приводящий генератор во вращение. Активная мощ ность, отдаваемая генератором в сеть,
Р 2 = Р эм — Р эл 1 — Р м = m 1 U 1 I 1 cosφ, (15.3)
где Рэм — электромагнитная мощность генератора; Рэл1 — элект рические потери в обмотке якоря; Рм — магнитные потери в сердечнике якоря.
Если пренебречь электрическими (что допустимо для машин большой и средней мощностей, сопротивление r 1 которых отно сительно мало) и магнитными потерями, можно записать
Рэм ≈ Р 2 = m 1 U 1 I 1 cosφ . (15.4)
При исследовании параллельной работы синхронного генера тора с сетью удобно электромагнитную мощность Р эм выразить через параметры машины и угол, характеризующий положение ротора относительно результирующего магнитного поля. Для это го используют векторную диаграмму явнополюсного синхронно го генератора, представленную на рис. 15.3, которая получена из диаграммы, приведенной на рис. 13.8 при r 1 = 0.
Рис. 15.3. Векторная диаграмма явнополюсного синхронного генератора при r а = 0
В соответствии с рис. 15.3 можно записать следующие уравнения электрического равновесия по осям симметрии d и q :
(15.5)
БЛОГ ЭЛЕКТРОМЕХАНИКА
Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам
- главная
- инфо
- блог
- словарь электромеханика
- электроника
- крюинговые компании
- Одесса/Odessa
- Николаев/Nikolaev
- Обучение
- Предметы по специальности
- АГЭУ
- АСЭЭС
- Диагностика и обслуживание судовых технических средств
- Мехатронные системы
- Микропроцессоры
- Моделирование электромеханических систем
- МПСУ
- САЭП
- САЭЭС
- СДВС
- СИВС
- Силовая электроника
- Судовые компьютерные ceти
- СУЭ и ОСУ
- ТАУ
- Технология судоремонта
- ТЭП
- ТЭЭО и АС
- Общие предметы
- Безопасность жизнедеятельности
- Высшая математика
- Ділова українська мова
- Интеллектуальная собственность
- Культурология
- Материаловедение
- Охрана труда
- Политология
- Системы технологий
- Судовые вспомогательные механизмы
- Судовые холодильные установки
- I курс
- конспекты
- ргр
- контрольные
- лабораторные
- курсовые
- зачёты
- экзамены
- II курс
- конспекты
- ргр
- контрольные
- лабораторные
- курсовые
- зачёты
- экзамены
- III курс
- конспекты
- ргр
- контрольные
- лабораторные
- курсовые
- зачёты
- экзамены
- IV курс
- конспекты
- ргр
- контрольные
- лабораторные
- курсовые
- зачёты
- экзамены
- V курс
- конспекты
- ргр
- контрольные
- лабораторные
- курсовые
- зачёты
- экзамены
- Предметы по специальности
- Теория
- английский
- интернет-ресурсы
- литература
- тематические статьи
- Практика
- типы судов
- пиратство
- видеоуроки
- мануалы
- морской словарь
- технический словарь
- история
- новости науки и техники
- авиация
- автомобили
- военная техника
- робототехника
04.10.2014
Параллельная работа генераторов переменного тока
Параллельная работа генераторов переменного тока требует соблюдения более сложных условий, чем параллельная работа генераторов постоянного тока.
Для включения синхронного генератора параллельно с другим необходимо:
1) равенство напряжений работающего и подключаемого генераторов;
2) равенство их частот;
3) совпадение порядка чередования фаз;
4) равенство углов сдвига между э. д. с. каждого генератору и напряжением на шинах.
Последнее условие сводится к геометрически одинаковому наложению роторов генераторов относительно обмоток своих статоров.
Процесс приведения генераторов в такое состояние, при котором все перечисленные условия будут выполнены, называется синхронизацией генераторов.
Если генераторы синхронизированы, то включение их на параллельную работу протекает спокойно, без появления в системе каких-либо дополнительных толчков тока. Если хотя бы одно из условий не выдержано, то между генераторами появляются значительные уравнительные токи, которые не позволяют осуществить параллельную работу генераторов, а в некоторых случаях могут даже вызвать их повреждение.
Рассмотрим параллельную работу двух синхронных генераторов.
Если генераторы одинаковы, электродвижущие силы и скорости вращения их равны, то при отсутствии внешней нагрузки (т. е. при холостом ходе) в цепи обмоток статоров генераторов тока не будет, так как э д. с. взаимно уравновешиваются.
При включении внешней нагрузки оба генератора начнут отдавать одинаковую, мощность. При индуктивной нагрузке напряжение каждого уменьшится на одну и ту же величину, причем между э. д. с. генератора и его напряжением появится некоторый сдвиг, по фазе определяемый углом δ. Мощность, отдаваемая генератором во внешнюю цепь, пропорциональна этому углу.
Предположим, что мы увеличили возбуждение, а следовательно, и э. д. с. первого генератора и уменьшили возбуждение второго так, что общее напряжение генераторов осталось прежним.
Так как мощность, развиваемая первичными двигателями, осталась неизменной, то как общая мощность, так и мощности, отдаваемые каждым из генераторов, также не изменились. Не изменился и ток внешней нагрузки: I — общий и I/2 — для каждого генератора.
Вместе с тем, так как э. д. с. обоих генераторов уже не равны, то между генераторами появится уравнительный ток Iу, протекающий только по цепи генераторов. Распределение токов в этом случае показано на рис. 1.
Как видим, ток в первом генераторе будет равен геометрической сумме токов внешней нагрузки I/2 и уравнительного Iу, а во втором — геометрической их разности.
Индуктивные сопротивления обмоток статоров генераторов значительно больше их активных сопротивлений. В связи с этим уравнительный ток будет отставать от разности э. д. с. генераторов почти на 90°.
При этом условии при сложении токов в первом генераторе и вычитании их во втором результирующий ток будет отставать от напряжения в каждом генераторе на различный угол.
Иными словами, каждый из генераторов будет работать при своем коэффициенте мощности, отличном от коэффициента мощности внешней сети. Если активная мощность, потребляемая внешней нагрузкой, близка к суммарной мощности обоих генераторов, то у перевозбужденного генератора действующий ток превысит номинальный ток генератора, чего допускать нельзя (перегрузка по току).
Отсюда следует, что при параллельной работе синхронных генераторов необходимо стремиться к тому, чтобы все генераторы работали с одним и тем же коэффициентом мощности, равным коэффициенту мощности сети.
Предположим теперь, что не изменяя возбуждения воздействием на регулятор первичного двигателя первого генератора, мы увеличили ему подачу топлива. В этом случае первичный двигатель разовьет увеличенный вращающий момент, под влиянием которого ротор первого генератора забежит вперед относительно ротора второго генератора, вращаясь в дальнейшем с прежней синхронной скоростью. Вследствие расхождения по фазе электродвижущих сил генераторов в их цепи возникнет разность э. д. с., под влиянием которой появится уравнительный ток.
Но уравнительный ток по своей фазе будет почти совпадать с э. д. с. первого генератора, т. е. явится для него током нагрузки, и будет почти противоположным э. д. с. второго генератора (будет уменьшать его нагрузку). В этом случае каждый из генераторов будет нести нагрузку, пропорциональную вращающему моменту, развиваемую его первичным двигателем.
При этом полюса более нагруженного генератора будут в пространстве находиться впереди полюсов менее нагруженного. Последнее обстоятельство равносильно тому, что у более нагруженного генератора угол сдвига фаз между э. д. с. и напряжением δ1 больше, чем у менее нагруженного δ2.
Следует отметить, что параллельная работа синхронных генераторов проходит устойчиво только при определенных значениях угла δ. Наиболее устойчива она при угле δ, равном 0°, что соответствует холостой работе генераторов; при угле, равном 90°, генератор выпадает из синхронизма и параллельная работа становится невозможной.
Неизменность угла δ зависит от постоянства скорости вращения первичного двигателя. При колебании скорости вращения вследствие изменения нагрузки или по каким-либо другим причинам угол δ может измениться до недопустимой величины. Поэтому надежность и устойчивость параллельной работы синхронных генераторов в значительной мере зависит от качества работы регуляторов оборотов первичных двигателей.
Необходимое для перераспределения нагрузок генераторов дистанционное управление подачей топлива первичным двигателям обеспечивается применением регуляторов с серводвигателем или с электромагнитным приводом клапанов подачи топлива. При включении напряжения серводвигатель или соленоид открывает клапан подачи топлива или пара. Степень открытия клапана, а следовательно, и количество подаваемого топлива регулируется продолжительностью включения серводвигателя или числом включенных соленоидов.
У синхронных генераторов с самовозбуждением и саморегулированием напряжения величина тока возбуждения, зависит от тока в цепи статора. В свою очередь при параллельной работе синхронных генераторов изменение тока возбуждения генератора влияет на величину его реактивного тока. Отсюда вытекает, что при параллельной работе синхронных генераторов с самовозбуждением и саморегулированием напряжения необходимо принимать специальные меры для обеспечения правильного распределения реактивного тока между ними.
В качестве такого мероприятия у генераторов одинаковой мощности предусматривают уравнительное соединение между их обмотками возбуждения (на стороне постоянного тока), как это изображено на рис. 2.
При замыкании автоматов генераторов подается ток на катушки контакторов К1 и К2, подключающих обмотки возбуждения к уравнительным шинам.
В результате параллельного соединения обмоток возбуждения любое изменение возбуждения одного генератора отражается и на величине возбуждения второго. Поэтому распределение реактивного тока между ними сохраняется правильным.
При параллельной работе генераторов разной мощности, уравнительное соединение выполняется в цепях схемы регулирования напряжения на стороне переменного тока (рис. 3).
Источник: