Характеристика холостого хода асинхронного генератора

Характеристика холостого хода асинхронного генератора

Содержание
  1. Рабочие характеристики асинхронного генератора
  2. Асинхронный генератор
  3. Характеристики автономных асинхронных генераторов с конденсаторным возбуждением
  4. Характеристика холостого хода асинхронного генератора
  5. Характеристика холостого хода и нагрузочная характеристика генератора постоянного тока с независимым возбуждением
  6. Характеристика холостого хода генератора
  7. Нагрузочная характеристика генератора
  8. Самодельный асинхронный генератор
  9. Устройство и принцип работы
  10. Принцип действия
  11. Отличие от синхронного генератора
  12. Классификация
  13. Область применения
  14. Асинхронный генератор своими руками
  15. Советы по эксплуатации
  16. Характеристика холостого хода генератора с клювообразным ротором; влияние на неё начального намагничивания магнитной системы, конструктивных параметров и частоты вращения ротора генератора.
  17. Характеристики генераторов независимого возбуждения
  18. Принцип работы
  19. Конструкция генератора
  20. Номинальные параметры генераторов

Рабочие характеристики асинхронного генератора

Для перевода АДФР в режим генератора машину постоянного тока необходимо перевести в режим двигателя. Если этот перевод осуществляется после снятия рабочих характеристик АД, то сначала необходимо разгрузить АД до холостого хода, т.е. сопротивление в цепи якоря генератора постоянного тока R должно быть максимальным (горит левая сигнальная лампа). Затем переключатель П1 поставить в среднее положение, оставив статор асинхронной машины включенным на сеть. Далее необходимо установить минимальное значение сопротивления R (горит правая сигнальная лампа), зашунтировав его выключателем В5. Затем осуществить включение МПТ на параллельную работу с сетью постоянного тока. В данном случае, регулируя с помощью АТР ток в обмотке возбуждения МПТ ( iв ), получить на зажимах якоря МПТ напряжение, равное напряжению сети постоянного тока, затем замкнуть П1 в верхнее положение. В этом случае стрелка амперметра А1 должна находиться на нулевом делении. Уменьшая ток возбуждения МПТ ( iв), т.е. увеличивая её частоту вращения, переводят МПТ в режим двигателя, на что указывает стрелка амперметра А1, отклоняясь в сторону надписи на шкале «двигатель». Таким образом АДФР переходит в режим работы генератором (n > n1 , s

По данным эксперимента проводят следующие вычисления, которые записывают в таблицу 2.8, аналогичную таблице 2.6.

Мощность, измеряемая ваттметрами, это полезная мощность Р2, равная:

. (2.38)

Подведенную к валу асинхронного генератора механическую мощность Р1 рассчитаем по формуле:

Сумма потерь рассчитывается по формуле (2.23); электрические потери в обмотке статора – по формуле (2.25); потери механические рмх и потери магнитные рмг были определены в опыте холостого хода асинхронного двигателя; электрические потери обмотки ротора вычисляются исходя из электромагнитной мощности Рэм, передаваемой через воздушный зазор с ротора на статор и скольжение s:

где s рассчитывается по формуле (1.9) и принимается положительным,

Добавочные потери при номинальном режиме принимаются равными :

а при токах I1, отличных от номинального рассчитываются по формуле (2.30).

Коэффициент полезного действия h асинхронного генератора определяется следующим образом:

(2.43)

Момент рассчитывается через механическую мощность Р1

По данным табл. 2.8 на рис. 2.8 нанесены рабочие характеристики асинхронного генератора I1, P1, cosj, h, s= f (P2).

Испытание асинхронного двигателя

С короткозамкнутым ротором

Цель и задачи испытаний

Основной целью испытания асинхронного двигателя с короткозамкнутым ротором является изучение свойств асинхронных двигателей при соединении обмоток статора по схеме звезда и треугольник и в однофазном режиме.

Задачи испытания заключаются в возможности и целесообразности пуска асинхронного двигателя переключением обмоток статора со звезды на треугольник, исследование и сопоставление рабочих характеристик при соединении обмоток статора звездой, треугольником и в однофазном режиме.

Для выполнения этих задач в лаборатории электрических машин разра-

ботан испытательный полуавтоматический стенд для асинхронного двигателя малой мощности, позволяющий осуществить пуск, снять характеристики холостого хода, короткого замыкания, рабочие характеристики при включении обмоток статора либо звездой либо треугольником, исследовать однофазный режим работы асинхронного двигателя с короткозамкнутым ротором (АДКР) с простой беличьей клеткой на роторе (рис.3.1).

Асинхронный генератор

Характеристики автономных асинхронных генераторов с конденсаторным возбуждением

Если выполняются условия ωr = const, C = const, то с включением генератора на нагрузку происходит уменьшение частоты.

Генерирование электрических колебаний переменной частоты при отмеченных условиях является характерной отличительной особенностью автономного асинхронного генератора. Принципиально возможно также получение постоянной частоты. Для этого достаточно осуществлять такое регулирование частоты вращения ротора, при котором частота вращения магнитного поля будет оставаться постоянной. В связи с этим, применительно к автономному асинхронному генератору, различают характеристики при постоянной (номинальной) частоте вращения и характеристики при постоянной (номинальной) частоте.

К основным характеристикам относятся: характеристика холостого хода, внешняя, нагрузочная, регулировочная и частотная.

В режиме холостого хода скольжение s ≈ 0. Поэтому характеристика холостого хода при постоянной частоте вращения ротора совпадает с характеристикой при постоянной частоте:

при ωr = const; f1 = const; I = 0 .

Внешняя характеристика автономного асинхронного генератора представляет собой зависимость напряжения на его зажимах от тока нагрузки при условии постоянства частоты вращения ротора, емкости конденсаторов и коэффициента мощности нагрузки, т.е.

при ωr = const; C = const; cosφ = const , или соответственно:

при f1 = const; C = const; cosφ = const,

гдe I — ток нагрузки; φ — фазовый угол сдвига между током и напряжением нагрузки.

при ωr = const; I = const; cosφ = const, или соответственно

при f1 = const; I = const; cosφ = const.

при U1 = const; ωr = const; cosφ = const, или соответственно:

при U1 = const; f1 = const; cosφ = const.

Частотная характеристика позволяет судить об изменении частоты с изменением нагрузки. Поэтому ее относят к постоянной частоте вращения ротора:

при ωr = const; C = const; cosφ = const.

Номинальная частота вращения может быть выбрана по номинальной частоте при холостом ходе или номинальной нагрузке. В первом случае в соотношение подставляется значение скольжения s = 0, во втором s = snom

По условию ограничения намагничивающего тока за номинальную частоту вращения ротора автономного асинхронного генератора, в качестве которого часто используется асинхронный двигатель, целесообразно принимать частоту, соответствующую номинальной частоте при номинальной нагрузке. Характеристика холостого хода, нагрузочные характеристики генератора и вольтамперные характеристики конденсатора при постоянной частоте вращения ротора (ωr = const, f1 = var) показаны на рис. 12.

Вольтамперные характеристики конденсатора соответствуют одной и той же емкости (С = const).

Характеристика холостого хода (без учета остаточной ЭДС) изображена кривой, проходящей через начало координат. Точке ее пересечения М с вольтамперной характеристикой конденсатора (прямой 0М) соответствует установившийся режим, характеризующийся напряжением U10 и током холостого хода I01

После включения генератора на нагрузку координаты рабочей точки, т.е. точки пересечения магнитной (нагрузочной) характеристики машины и вольтамперной характеристики конденсатора, изменяются вследствие изменения напряжения и тока холостого хода.

С переходом от режима холостого хода к режиму с номинальной нагрузкой рабочая точка перемещается из положения М на характеристике холостого хода в положение N на нагрузочной характеристике 0NВ. Вольтамперная характеристика конденсатора поворачивается в направлении против часовой стрелки на угол Δα = α1 — α, соответствующий приращению реактивного сопротивления конденсатора, обусловленному уменьшением частоты.

Изменения напряжения и тока холостого хода при переходе режима от холостого хода к режиму с номинальной нагрузкой определяются по соотношениям:

По мере увеличения нагрузки вольтамперная характеристика конденсатора продолжает поворачиваться против часовой стрелки, а рабочая точка перемещаться в направлении к точке Р. При этом генератор все более размагничивается, что сопровождается уменьшением напряжения на его зажимах. С переходом рабочей точки в ненасыщенную область 0Р напряжение резко исчезает. Режим самовозбуждения сохраняется до некоторой определенной нагрузки, характеризующей предел статической устойчивости машины.

Заметим, что если экспериментальное получение характеристик автономного асинхронного генератора переменной частоты при fr = const осуществляется довольно просто, то теоретическое исследование режимов его работы встречает значительные затруднения. Так как каждой произвольно взятой нагрузке соответствует вполне определенная частота, то все реактивные параметры системы асинхронный генератор и нагрузка становятся функциями скольжения, причем практически отпадает возможность использования такого метода анализа, как метод круговых диаграмм. Из этого следует, что целесообразнее рассматривать характеристики автономного асинхронного генератора постоянной частоты с переменной частотой вращения ротора. Тогда все режимы работы генератора могут быть исследованы с помощью схем замещения, векторных и круговых диаграмм.

Замечания и предложения принимаются и приветствуются!

Характеристика холостого хода асинхронного генератора

ХОЛОСТОЙ ХОД СИНХРОННЫХ ГЕНЕРАТОРОВ

Под холостым ходом автономного синхронного генера­тора понимается такой режим его работы, при котором ро­тор вращается приводным двигателем, а обмотка якоря разомкнута. В этом случае магнитное поле машины созда­ется только током возбуждения. Это поле можно разло­жить на две составляющие: основное поле, магнитные ли­нии которого проходят через воздушный зазор и сцепляют­ся с обмоткой якоря, и поле рассеяния полюсов, магнитные линии которого сцепляются только с обмоткой возбуж­дения.

Магнитный поток основного поля при вращении полю­сов индуктирует в обмотке якоря ЭДС. К этой ЭДС и к на­пряжению на выводах генератора предъявляется требова­ние, чтобы их форма приближалась к синусоидальной. Это требование обусловлено тем, что при синусоидальных ЭДС и напряжении ток в якоре при линейном характере подключенной цепи также синусоидален. Вследствие этого сум­марные потери в генераторе и у потребителей минималь­ны, так как отсутствуют добавочные потери от высших гармонических. Критерием для оценки кривой ЭДС служит коэффициент искажения синусоидальности этой кривой, под которым понимается выраженное в процентах отноше­ние корня квадратного из суммы квадратов амплитудных (или действующих) значений высших гармонических со­ставляющих данной кривой к амплитудному (или дейст­вующему) значению основной гармонической этой кривой:

Читайте также  Холодное копчения с генератором дыма своими руками

где ν — порядок гармонической составляющей.

Коэффициент искажения кривой линейных ЭДС в трех­фазных генераторах переменного тока 50 Гц не должен превышать 5 % для генераторов мощностью выше 100 кВ∙А и 10 % для генераторов мощностью до 100 кВ∙А.

Для получения кривой ЭДС, близкой к синусоиде, прежде всего необходимо, чтобы кривая магнитного поля возбуждения машины была по возможности синусоидаль­ной. В явнополюсной машине для этого зазор между полю­сом и статором делают неравномерным (рис. 20, а): обычно у краев полюса зазор берут в 1,5-2 раза больше, чем у середины. Распределение магнитной индукции в зазоре между полюсом и якорем при такой конфигурации его нако­нечника показано на рис. 20, б. Там же штриховой ли­нией для сравнения показана кривая магнитной индукции при равномерном зазоре. В неявнополюсной машине улучше­ние формы магнитного поля возбуждения достигается вы­бором соотношения между частями полюсного деления, имеющими и не имеющими об­мотку (рис. 21). Пренебре­гая влиянием пазов, создаю­щих некоторую ступенчатость в кривой МДС и магнитной индукции, можно принять, что МДС обмотки возбуждения, а также кривая магнитного поля распределены по окружности цилиндрического ро­тора с неявными полюсами по трапецеидальному закону. Амплитудные значения основных гармоник МДС и индук­ции поля соответственно равны

(3)

где в,max и δ,max — максимальные значения МДС обмот­ки возбуждения на один полюс и индукции в зазоре; в, в число витков обмотки возбуждения на полюс и ток возбуждения; α — длина дуги, соответствующая половине той части полюсного деления, на которой располагается об­мотка возбуждения.

В целях улучшения кривой магнитного поля возбужде­ния часть полюса, на которой не укладывается обмотка, выбирают равной τ/3 (α=π/3). В этом случае в кривой магнитной индукции будут отсутствовать все гармоники с номером, кратным 3, а остальные высшие гармоники бу­дут ослаблены.

Кроме того, для улучшения формы кривой индуктиро­ванной ЭДС применяют распределение обмотки якоря по пазам и укорочение ее шага. В мощных много­полюсных машинах улучшению кривой ЭДС способствует применение обмоток с дробным

Важной характеристикой синхронной машины является характеристика холостого хода. Она представляет собой зависимость ЭДС, индуктируемой в обмотке якоря, от тока возбуждения при неизменной частоте вращения ротора. Эта характеристика позволяет
оценить насыщение магнит­ной цепи машины и с ее помощью построить векторные диаграммы и другие характеристики машины.

На рис. 22 показана схема для снятия характерис­тики холостого хода опытным путем. С помощью резистора в ток возбуждения изменяют от максимального значения до нуля, записывая при этом показания амперметра и вольтметра.

При токе возбуждения в =0 ЭДС от остаточного магнетизма ост = (2÷3) %U1ном. При расчетах обычно используют характеристику холостого хода, которую получают, смещая опытную характеристику вправо на расстояние (сплошная линия).

На основании сравнения характеристик холостого хода современных синхронных гене­раторов было установлено, что эти характеристики мало от­личаются друг от друга, если построение их производить в относительных единицах. При переводе ЭДС в относи­тельные единицы ее текущее значение в вольтах делят на номинальное напряжение яко­ря в вольтах (*=/ U1ном). Относительное значение тока возбуждения находят как отношение текущего значения тока возбуждения в амперах к току, принятому за базовый, в амперах (в* = в / в,б). За базовый ток возбуждения в,б принимается ток, соответст­вующий по характеристике холостого хода = U1ном. По­лученные таким образом характеристики называются нормальными характеристиками холостого хода. Эти характерстики для явнополюсных и неявнополюсных генераторов даны в таблице.

в*

Характеристика холостого хода и нагрузочная характеристика генератора постоянного тока с независимым возбуждением

Характеристика холостого хода генератора

Приводим генератор постоянного тока с независимым возбуждением во вращение со скоростью ω при отсутствии напряжения на обмотке возбуждения, при этом на зажимах якоря появится напряжение, которое называется напряжением остаточного магнетизма.

Схема генератора постоянного тока с независимым возбуждением.

Подаем напряжение на обмотку возбуждения и увеличиваем с помощью Rв ток в обмотке возбуждения. Ток в обмотке возбуждения нужен до тех пор, пока генератор не попадет в область насыщения. Теперь плавно уменьшаем ток в обмотке возбуждения до нуля. При токе возбуждения равным нулю меняем полярность на зажимах генератора и начинаем увеличивать ток в обмотке возбуждения до области насыщения, затем уменьшаем этот ток до нуля, меняем полярность на обмотке возбуждения и увеличиваем то к в обмотке возбуждения до насыщения. Получаем полную характеристику холостого хода.

Характеристика холостого хода генератора постоянного тока с независимым возбуждением.

Полная характеристика холостого хода генератора представляет собой петлю гистерезиса и связана с сортом стали, из которой изготовлен генератор. Площадь петли гистерезиса равна потерям на перемагничивание стали.

Характеристика холостого хода состоит из 2-х ветвей: верхняя называется нисходящая, нижняя – восходящая.

Чем уже петля гистерезиса, тем меньше потери, кроме того при узкой петле будут и меньше расхождения напряжения на восходящей и нисходящей ветвях характеристики холостого хода.

Для расчетов и исследования используют усредненную характеристику холостого хода, которая проходит посреди петли гистерезиса через нуль.

Нагрузочная характеристика генератора

Схема генератора постоянного тока с независимым возбуждением для получения нагрузочной, внешней и регулировочной характеристик.

Приводим генератор во вращение со скоростью ω и при разомкнутом ключе K. Начинаем увеличивать ток в обмотке возбуждения, пока напряжение на выходе генератора не достигнет номинального значения. Напряжение возрастает по характеристике холостого хода. При значении тока iв равному номинальному замыкаем ключ K и включаем сопротивление нагрузки Rн. По обмотке якоря начинает протекать ток. Как только по обмотке якоря начинает протекать ток, согласно уравнению напряжения генератора:

Если изменять ток в обмотке возбуждения, мы получим характеристику при токе I1=const.

В режиме холостого хода напряжение на зажимах генератора, которое называется напряжением холостого хода, равно ЭДС генератора.

Как только к обмотке якоря будет подключено сопротивление нагрузки, напряжение начнет снижаться по двум причинам:
1. Увеличение падения напряжения на активных сопротивлениях якорной цепи.
2. Снижение магнитного потока Фδ, а следовательно и ЭДС якоря Eа в результате действия размагничивающей реакции якоря.

Если увеличивать ток в якоре, характеристика пойдет еще ниже.

Таким образом, нагрузочные характеристики представляют собой семейство характеристик для различных значений токов нагрузки (от 0 до Iном).

Влияние двух факторов учитывается с помощью, так называемого, характеристического треугольника (реактивного треугольника) – это треугольник, катеты которого пропорциональны току якоря, учитывают снижение напряжения в генераторе, работающем под нагрузкой. Катет AB учитывает влияние реакции якоря, а катет BC – падение напряжение на активных сопротивлениях якорной цепи.

Совместное влияние этих двух факторов учитывается гипотенузой AC.

Нагрузочная характеристика генератора постоянного тока с независимым возбуждением.

Самодельный асинхронный генератор

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Рис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Читайте также  Шум натяжного ролика генератора приора

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).

Рис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.

Рис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.

Рисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • ИБП;
  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.

Рис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Асинхронный генератор своими руками

Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):

Рис. 6. Заготовка с наклеенными магнитами

Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .

При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1
https://www.youtube.com/watch?v=ZQO5S9F72CQ

Часть 2
https://www.youtube.com/watch?v=nDCdADUZghs

Часть 3
https://www.youtube.com/watch?v=6M_w1b2xyM8

Часть 4
https://www.youtube.com/watch?v=CONHg7p-IYE

Часть 5
https://www.youtube.com/watch?v=z2YSqVh1vM8

Часть 6
https://www.youtube.com/watch?v=FNU83kOeSbA

Для упрощения подбора конденсаторов воспользуйтесь таблицей:

2 28 36 60
3,5 45 56 100
5 60 75 138

На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.

Рис. 7. Схема подключения конденсаторов

Советы по эксплуатации

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

Характеристика холостого хода генератора с клювообразным ротором; влияние на неё начального намагничивания магнитной системы, конструктивных параметров и частоты вращения ротора генератора.

Характеристики генераторов независимого возбуждения

Характеристика холостого хода. Определяет зависимость напряжения U0 от тока возбуждения при Iа=0 и n=const. Для снятия этой характеристики собирается схема, показанная на рис. 1. Выключатель «Р» отключен, генератор разгоняется до номинальной частоты вращения, снятие характеристики начинают с Iв=0. При этом, ввиду наличия магнитного потока остаточного намагничивания, в проводниках обмотки якоря индуктируется ЭДС Еост, величина которой обычно составляет (2…3)% от Uн генератора.

При увеличении тока в обмотке возбуждения от нуля до максимального значения, напряжение генератора возрастает по кривой 1.

Читайте также  Щетки генератора переменного тока это

Обычно ток возбуждения увеличивают до тех пор, пока напряжение на зажимах генератора не достигнет значения (1,1…1,25) Uн. Затем ток возбуждения уменьшают до нуля, изменяют его направление на обратное и вновь увеличивают до Iв= — Iвmax.. Напряжение при этом изменяется от +Umax до -Umax по кривой 2, которая называется нисходящей ветвью. Кривая 2 проходит выше кривой I, что объясняется процессами перемагничивания магнитной цепи. Далее изменяют ток возбуждения от -Iвmaxдо +Iвmax, при этом напряжение меняется от -Umax до +Umaxпо кривой 3, так называемой восходящей ветвью характеристики холостого хода. Кривые 2 и 3 образуют петлю гистерезиса, которая определяет свойства стали магнитной цепи машины. Проведя между ними среднюю линию 4, получают так называемую расчетную характеристику холостого хода, которой пользуются на практике.

Следует отметить, что при снятии характеристики холостого хода изменять ток возбуждения нужно только в одном направлении, чтобы точки принадлежали одной ветви.

Анализ характеристики холостого хода показывает, что начальная часть кривой представляет собой практически прямую линию, так как при малых токах Iвпочти вся МДС идет на преодоление магнитного сопротивления воздушного зазора. По мере увеличения тока Iви возрастания потока Ф сталь магнитопровода насыщается и зависимость U0= f(Iв) становится нелинейной.

Точка, соответствующая напряжению Uн, лежит обычно на перегибе характеристики холостого хода. Это связано с тем, что при работе на прямолинейном участке характеристики напряжение генератора неустойчиво, а в насыщенной части кривой ограничены возможности регулирования напряжения генератора. Таким образом характеристика холостого хода имеет важное значение для оценки свойств генератора.

Рис.3 — Нагрузочные характеристики генератора независимого возбуждения

Нагрузочные характеристики. Определяют зависимости напряжения от тока возбуждения при Iа=const и n=const. Схема для снятия этих характеристик та же, что и для снятия характеристики холостого хода, но в этом случае к генератору подключена нагрузка и по цепи якоря проводит постоянный по величине ток, а напряжение генератора меньше ЭДС вследствие 2-х причин — падения напряжения в цепи якоря Ia?r и размагничивающего действия реакции якоря. Поэтому все нагрузочные характеристики расположены ниже расчетной характеристики холостого хода (рисунок 2.4). Можно считать, что характеристика холостого хода есть частный случай нагрузочной характеристики при I = 0. Обычно нагрузочную характеристику снимают при Iа = Iн.

Внешняя характеристика. Определяет зависимость напряжения генератора U от тока нагрузки I, т.е. U=f(I) при n=const и Iв=const, что при независимом возбуждении равносильно условию rв=const .

Внешняя характеристика генератора снимается по схеме рис. 4.

Сначала доводят скорость генератора до номинальной частоты вращения, и возбудив генератор, нагружают его до номинальной нагрузки. При этом устанавливают такой ток возбуждения Iв=Iвн, чтобы при токе нагрузки I=Iн напряжение на генераторе было равно номинальному Uн. Затем постепенно уменьшают нагрузку до нуля и снимают показания приборов. По мере уменьшения нагрузки напряжение на генераторе будет возрастать по двум причинам — из-за уменьшения падения напряжения в цепи обмотки якоря Iа?r и уменьшения размагничивающего действия реакции якоря. При переходе к холостому ходу (I=0) напряжение возрастает на величину DUн (рис. 5), которая называется номинальным изменением напряжения генератора и определяется по формуле:

ГОСТ регламентирует величину изменения напряжения генератора (у генераторов независимого возбуждения

DUн =(5…10)% ).При коротком замыкании генератора, т.е. уменьшении сопротивления нагрузки до нуля, напряжение на его зажимах падает до нуля (U=0), а ток короткого замыкания во много раз превосходит номинальный Iкз=(6…15)Iн. Поэтому режим короткого замыкания для генераторов независимого возбуждения является очень опасным, особенно для коллектора и щеточного аппарата из-за возможности возникновения сильного искрения или кругового огня.

Регулировочная характеристика. Определяет зависимость тока возбуждения Iв от тока нагрузки I, т.е. Iв=f(I) при n=const и U=const (рис. 6).

Рис. 6 — Регулировочная характеристика генератора

Регулировочная характеристика показывает, как надо изменять ток возбуждения, чтобы при изменении нагрузки напряжение на генераторе оставалось неизменным по величине.

С увеличением нагрузки ток возбуждения необходимо увеличивать чтобы скомпенсировать увеличение падения напряжения на обмотке якоря Ia?r и размагничивающее действие реакции якоря. При переходе от холостого хода к номинальной нагрузке увеличение тока возбуждения составляет (10…15)%.

Характеристика короткого замыкания. Определяет зависимость тока цепи якоря I от тока возбуждения I=f(Iв) при U=0 и n=const Для снятия этой характеристики зажимы генератора замыкают накоротко, разгоняют генератор до номинальной частоты вращения и увеличивая ток возбуждения от нуля доводят ток якоря до Iкз=(1,25..1,5)Iн.

Рис. 7 — Характеристика короткого замыкания.

По полученным данным строят характеристику короткого замыкания (рис.7). Эта характеристика носит вспомогательный характер и при испытании генератора обычно не снимается.

Принцип работы

Хорошо усвоить принцип работы асинхронного механизма поможет предварительное ознакомление с основами функционирования генераторных машин синхронного типа. Дело в том, что синхронные и асинхронные генераторы по своему устройству и способу действия очень схожи и отличаются лишь небольшими деталями (конструкцией вращающегося ротора, в частности).

В механизмах первого класса используется ротор с размещёнными на нем постоянными магнитами. При его вращении от механического привода магнитные элементы наводят в статоре меняющееся по величине и направлению э/м поле, обеспечивающее протекание переменного тока в подключённой к его зажимам нагрузке. При этом сам ротор вращается без рассогласования с создаваемой им в катушках ЭДС (синфазно с ней).

В отличие от синхронных машин, асинхронный генератор характеризуется наличием небольшого отставания вращения роторного элемента устройства по отношению к наводимому в статоре электромагнитному полю. Последнее как бы тормозит его движение, что принято называть «эффектом скольжения».

Обратите внимание! Указанное явление объясняется особенностью конструкции ротора АГ, изготавливаемого в виде короткозамкнутой цельной решётки (так называемого «беличьего колеса»). Её внешний вид приводится на фото ниже

Ротор «беличье колесо»

При вращении приводного вала под воздействием внешнего механического импульса (от двигателя внутреннего сгорания, например) за счёт остаточного магнетизма статора в решётке такого ротора наводится собственная ЭДС. Вследствие этого оба поля (и подвижное, и неподвижное) начинают взаимодействовать друг с другом в динамическом режиме.

Поскольку поле в обмотках ротора наводится с задержкой относительно неподвижного статора генератора, он несколько отстаёт от наводимого в ней э/м поля (то есть вращается асинхронно).

Конструкция генератора

На данный момент производится много видов индукционных приборов, но устройство генератора создано так, что в них присутствуют одинаковые части:

  • Электромагнит либо постоянный магнит, что производит магнитное поле.
  • Обмотка с индуцирующейся переменной ЭДС.

Чтобы получить наибольший магнитный поток, во всех генераторах используют специальную магнитную структуру, которая состоит из двух стальных сердечников.

Обмотки, что создают магнитное поле, установлены в пазах одного из сердечников, а обмотки, индуцируемые ЭДС – в пазах другого. Один из сердечников — внутренний — взаимодействует со своей обмоткой и крутится вокруг горизонтального либо вертикального стержня. Такой стержень называется ротором. Недвижимый сердечник с обмоткой называется якорем (статором).

Советуем изучить — Как работает электрический генератор

Номинальные параметры генераторов

Завод-изготовитель предназначает генератор для определенного длительно допустимого режима работы, который называют номинальным. Этот режим работы характеризуется параметрами, которые носят название номинальных данных генератора и указываются на его табличке, а также в паспорте машины.

Номинальное напряжение генератора — это линейное (междуфазное) напряжение обмотки статора в номинальном режиме.

Номинальным током статора генератора называется то значение тока, при котором допускается длительная нормальная работа генератора при нормальных параметрах охлаждения (температура, давление и расход охлаждающего газа и жидкости) и номинальных значениях мощности и напряжения, указанных в паспорте генератора.

Номинальная полная мощность генератора определяется по следующей формуле, кВА:

Sном = √3UномIном (2)

Номинальная активная мощность генератора — это наибольшая активная мощность, для длительной работы с которой он предназначен в комплекте с турбиной.

Номинальная активная мощность генератора определяется следующим выражением:

Pном = Sномcosφном (3)

Номинальные мощности турбогенераторов должны соответствовать ряду мощностей согласно ГОСТ 533-85Е. Шкала номинальных мощностей крупных гидрогенераторов не стандартизирована.

Номинальный ток ротора — это наибольший ток возбуждения генератора, при котором обеспечивается отдача генератором его номинальной мощности при отклонении напряжения статора в пределах ±5% номинального значения и при номинальном коэффициенте мощности.

Номинальный коэффициент мощности согласно ГОСТ принимается равным 0,8 для генераторов мощностью до 125 MBА, 0,85 для турбогенераторов мощностью до 588 MBА и гидрогенераторов до 360 MBА, 0,9 для более мощных машин. Для капсульных гидрогенераторов обычно cosφном ≈ 1.

Каждый генератор характеризуется также КПД при номинальной нагрузке и номинальном коэффициенте мощности. Для современных генераторов номинальный коэффициент полезного действия колеблется в пределах 96,3-98,8%.

Источник: nevinka-info.ru

Путешествуй самостоятельно