Электронный генератор виды генераторов

Электронный генератор виды генераторов

Содержание
  1. Виды электрических генераторов и принципы их работы
  2. Электронные генераторы
  3. Электронные генераторы. Виды и устройство. Работа и особенности
  4. Электронные генераторы
  5. Такие генераторы приобрели популярность в электронике, компьютерной технике, радиоприемниках. Генераторами может выдаваться сигнал частотой до нескольких мегагерц. Форма выходного напряжения имеет формы синусоиды, прямоугольника и пилы.
  6. Электронные генераторы состоят из следующих частей:
  7. Электронный генератор
  8. Электронный генератор
  9. Содержание
  10. Виды электронных генераторов
  11. Генераторы гармонических колебаний
  12. История
  13. Устойчивость генераторов
  14. Фазовый анализ генератора Мейснера.
  15. Фазовый анализ LC-генератора с СR положительной обратной связью
  16. Применение
  17. См. также
  18. Ссылки
  19. Виды цифровых генераторов
  20. Электрогенераторы. Виды и устройство. Применение и как выбрать
  21. Виды электрогенераторов

Виды электрических генераторов и принципы их работы

Электрическим генератором называется машина или установка, предназначенная для преобразования энергии неэлектрической — в электрическую: механической — в электрическую, химической — в электрическую, тепловой — в электрическую и т. д. Сегодня в основном, произнося слово «генератор», мы имеем ввиду преобразователь механической энергии — в электрическую.

Это может быть дизельный или бензиновый переносной генератор, генератор атомной электростанции, автомобильный генератор, самодельный генератор из асинхронного электродвигателя, или тихоходный генератор для маломощного ветряка. В конце статьи мы рассмотрим в качестве примера два наиболее распространенных генератора, но сначала поговорим о принципах их работы.

Так или иначе, с физической точки зрения принцип работы каждого из механических генераторов — один и тот же: явление электромагнитной индукции, когда при пересечении линиями магнитного поля проводника — в этом проводнике возникает ЭДС индукции. Источниками силы, приводящей к взаимному перемещению проводника и магнитного поля, могут быть различные процессы, однако в результате от генератора всегда нужно получить ЭДС и ток для питания нагрузки.

Принцип работы электрического генератора — Закон Фарадея

Принцип работы электрического генератора был открыт в далеком 1831 году английским физиком Майклом Фарадеем. Позже этот принцип назвали законом Фарадея. Он заключается в том, что при пересечении проводником перпендикулярно магнитного поля, на концах этого проводника возникает разность потенциалов.

Первый генератор был построен самим Фарадеем согласно открытому им принципу, это был «диск Фарадея» — униполярный генератор, в котором медный диск вращался между полюсами подковообразного магнита. Устройство давало значительный ток при незначительном напряжении.

Позже было установлено, что отдельные изолированные проводники в генераторах проявляют себя гораздо эффективнее с практической точки зрения, чем сплошной проводящий диск. И в современных генераторах применяются теперь именно проволочные обмотки статора (в простейшем демонстрационном случае — виток из проволоки).

Генератор переменного тока

В подавляющем своем большинстве современные генераторы — это синхронные генераторы переменного тока. У них на статоре располагается якорная обмотка, от которой и отводится генерируемая электрическая энергия. На роторе располагается обмотка возбуждения, на которую через пару контактных колец подается постоянный ток, чтобы получить вращающееся магнитное поле от вращающегося ротора.

За счет явления электромагнитной индукции, при вращении ротора от внешнего привода (например от ДВС), его магнитный поток пересекает поочередно каждую из фаз обмотки статора, и таким образом наводит в них ЭДС.

Чаще всего фаз три, они смещены физически на якоре друг относительно друга на 120 градусов, так получается трехфазный синусоидальный ток. Фазы можно соединить по схеме «звезда» либо «треугольник», чтобы получить стандартное сетевое напряжение.

Частота синусоидальной ЭДС f пропорциональна частоте вращения ротора: f = np/60, где — p — число пар магнитных плюсов ротора, n – количество оборотов ротора в минуту. Обычно максимальная скорость вращения ротора — 3000 оборотов в минуту. Если подключить к обмоткам статора такого синхронного генератора трехфазный выпрямитель, то получится генератор постоянного тока (так работают, кстати, все автомобильные генераторы).

Упрощенная схема трехфазного генератора переменного тока:

Трехмашинный синхронный генератор

Конечно, у классического синхронного генератора есть один серьезный минус — на роторе располагаются контактные кольца и щетки, прилегающие к ним. Щетки искрят и изнашиваются из-за трения и электрической эрозии. Во взрывоопасной среде это не допустимо. Поэтому в авиации и в дизель-генераторах более распространены бесконтактные синхронные генераторы, в частности — трехмашинные.

У трехмашинных устройств в одном корпусе установлены три машины: предвозбудитель, возбудитель и генератор — на общем валу. Предвозбудитель — это синхронный генератор, он возбуждается от постоянных магнитов на валу, генерируемое им напряжение подается на обмотку статора возбудителя.

Статор возбудителя действует на обмотку на роторе, соединенную с закрепленным на ней трехфазным выпрямителем, от которого и питается основная обмотка возбуждения генератора. Генератор генерирует в своем статоре ток.

Газовые, дизельные и бензиновые переносные генераторы

Сегодня очень распространены в домашних хозяйствах дизельные, газовые и бензиновые генераторы, которые в качестве приводных двигателей используют ДВС — двигатель внутреннего сгорания, передающий механическое вращение на ротор генератора.

У генераторов на жидком топливе имеются топливные баки, газовым генераторам — необходимо подавать топливо через трубопровод, чтобы затем газ был подан в карбюратор, где превратится в составную часть топливной смеси.

Во всех случаях топливная смесь сжигается в поршневой системе, приводя во вращение коленвал. Это похоже на работу автомобильного двигателя. Коленвал вращает ротор бесконтактного синхронного генератора (альтернатора).

Лучшие инверторные генераторы домашних электростанций имеют встроенный аккумулятор для компенсации перепадов и систему двойного преобразования, у таких устройств переменное напряжение получается более стабилизированным.

Автомобильные генераторы

Еще один пример генератора переменного тока — самый распространенный в мире вид генератора — автомобильный генератор. Данный генератор традиционно содержит обмотку возбуждения с контактными кольцами на роторе и трехфазную обмотку статора с выпрямителем.

Встроенный электронный регулятор удерживает напряжение в допустимых для автомобильного аккумулятора пределах. Автомобильный генератор — высокооборотный генератор, его обороты могут достигать 9000 в минуту.

Хотя изначально ток получается переменным (полюсные наконечники ротора поочередно и в разной полярности пересекают своими магнитными потоками три фазы обмотки статора), затем он выпрямляется диодами и превращается в постоянный, пригодный для зарядки аккумулятора.

Необычные конструкции электрических генераторов:

Электронные генераторы

Генераторами называются электронные устройства, преобразующие энергию источника постоянного тока в энергию переменного тока (электромагнитных колебаний) различной формы требуемой частоты и мощности.

Электронные генераторы применяются в радиовещании, медицине, радиолокации, входят в состав аналого-цифровых преобразователей, микропроцессорных систем и т. д.

Ни одна электронная система не обходится без внутренних или внешних генераторов, задающих темп ее работы. Основные требования к генераторам – стабильность частоты колебаний и возможность снятия с них сигналов для дальнейшего использования.

Классификация электронных генераторов:

1) по форме выходных сигналов:

— сигналов прямоугольной формы (мультивибраторы);

— сигналов линейно изменяющегося напряжения (ГЛИН) или их еще называют генераторами пилообразного напряжения;

— сигналов специальной формы.

2) по частоте генерируемых колебаний (условно):

— низкой частоты (до 100 кГц);

— высокой частоты (свыше 100 кГц).

3) по способу возбуждения:

— с независимым (внешним) возбуждением;

— с самовозбуждением (автогенераторы).

Автогенератор — генератор с самовозбуждением, без внешнего воздействия преобразующий энергию источников питания в незатухающие колебания, например, колебательный контур.

Рисунок 1 – Структурная схема генератора

Схемы электронных генераторов (рисунок 1) строятся по тем же схемам, что и усилители, только у генераторов нет источника входного сигнала, его заменяет сигнал положительной обратной связи (ПОС). Напоминаем, что обратная связь — это передача части выходного сигнала во входную цепь. Необходимая форма сигнала обеспечивается структурой цепи обратной связи. Для задания частоты колебаний цепи ОС строятся на LC или RC-цепях (частоту определяет время перезаряда конденсатора).

Сигнал, сформированный в цепи ПОС, поступает на вход усилителя, усиливается в К раз и поступает на выход. При этом часть сигнала с выхода возвращается на вход через цепь ПОС, где ослабляется в К раз, что позволят поддерживать постоянную амплитуду выходного сигнала генератора.

Генераторы с независимым внешним возбуждением (избирательные усилители) являются усилителями мощности с соответствующим частным диапазоном, на вход которых подаётся электрический сигнал от автогенератора. Т.е. происходит усиление только определенной полосы частот.

Для создания генераторов низкой частоты обычно используют операционные усилители, в качестве цепи ПОС устанавливают RC-цепи для обеспечения заданной частоты f0 синусоидальных колебаний.

RC-цепи представляют собой частотные фильтры — устройства, пропускающее сигналы в определённом диапазоне частот и не пропускающее в не этого диапазона. При этом по цепи обратной связи на вход усилителя возвращается, а значит и усиливается только определённая частота или полоса частот.

На рисунке 2 показаны основные типы частотных фильтров и их амплитудно-частотная характеристика (АЧХ). АЧХ показывает пропускную способность фильтра в зависимости от частоты.

Рисунок 2 – Типы частотных фильтров и их амплитудно-частотная характеристика

— фильтры нижних частот (ФНЧ);

— фильтры верхних частот (ФВЧ);

— полосовые частотные фильтры (ПЧФ);

-заграждающие частотные фильтры (ЗЧФ).

Фильтры характеризуются частотой среза fc, выше либо ниже которой идет резкое ослабление сигнала. Полосовые и заграждающие фильтры характеризуются также шириной полосы пропускания у ПЧФ (непропускания у ЗЧФ).

На рисунке 3 приведена схема синусоидального генератора. Необходимый коэффициент усиления задаётся с помощью цепи ООС на резисторах R1, R2.Для обеспечения сдвига по фазе равного 0, цепь ПОС подключена между выходом ОУ и его неинвертирующим входом. При этом цепь ПОС представляет собой полосовой фильтр. Частота резонанса f0 определяется по формуле: f0 = 1/(2πRC)

Для стабилизации частоты генерируемых колебаний в качестве частотозадающей цепи используют кварцевые резонаторы. Кварцевый резонатор представляет собой тонкую пластину минерала, установленную в кварцедержателе. Как известно, кварц обладает пьезоэффектом, что позволяет использовать его как систему, эквивалентную электрическому колебательному контуру и обладающую резонансными свойствами. Резонансные частота кварцевых пластин лежат в пределах от нескольких единиц килогерц до тысяч МГц с нестабильностью частоты, обычно порядка 10 -8 и ниже.

Рисунок 3 – Схема RC-генератора синусоидальных сигналов

Мультивибраторы — это электронные генераторы сигналов прямоугольной формы.

Мультивибратор в подавляющем большинстве случаев выполняет функцию задающего генератора, формирующего запускающие входные импульсы для последующих узлов и блоков в системе импульсного или цифрового действия.

На рисунке 4 приведена схема симметричного мультивибратора на ИОУ. Симметричный – время импульса прямоугольного импульса равно времени паузы tимп = tпаузы.

ИОУ охвачен положительной обратной связью – цепь R1,R2, действующей одинаково на всех частотах. Напряжение на неивертирующем входе постоянно и зависит от сопротивления резисторов R1,R2. Входное напряжение мультивибратора формируется при помощи ООС через цепочку RC.

Рисунок 4 – Схема симметричного мультивибратора

Уровень напряжения на выходе изменяется с +Uнас на -Uнас и обратно.

Если напряжение выхода Uвых = +Uнас конденсатор заряжается и напряжение Uс, действующее на инвертирующем входе возрастает по экспоненциальному закону (рис. 5).

При равенстве Uн = Uс произойдёт скачкообразное изменение выходного напряжения Uвых = -Uнас, что вызовет перезаряд конденсатора. При достижении равенства -Uн = -Uс снова произойдёт изменение состояние Uвых. Процесс повторяется.

Рисунок 5 – Временные диаграммы работы мультивибратора

Изменение постоянной времени RC-цепи приводит к изменению времени заряда и разряда конденсатора, а значит и частоты колебаний мультивибратора. Кроме того, частота зависит от параметров ПОС и определяется по формуле: f = 1/T = 1/2tи = 1/[2 ln(1+2 R1/R2)]

Читайте также  Что может потянуть бензиновый генератор 3 квт

При необходимости получить несимметричные прямоугольные колебания для tи ≠ tп, используют несимметричные мультивибраторы, в которых перезаряд конденсатора происходит по разным цепочкам с различными постоянными времени.

Одновибраторы (ждущие мультивибраторы) предназначены для формирования прямоугольного импульса напряжения требуемой длительности при воздействии на входе короткого запускающего импульса. Одновибраторы часто называют еще электронными реле выдержки времени.

В технической литературе встречается еще одно название одновибратора – ждущий мультивибратор.

Одновибратор обладает одним длительно устойчивым состоянием равновесия, в котором он находится до подачи запускающего импульса. Второе возможное состояние является временно устойчивым. В это состояние одновибратор переходит под действием запускающего импульса и может находиться в нем конечное время tв, после чего автоматически возвращается в исходное состояние.

Основными требованиями к одновибраторам являются стабильность длительности выходного импульса и устойчивость его исходного состояния.

Генераторы линейно-изменяющихся напряжений (ГЛИН) формируют периодические сигналы, изменяющиеся по линейному закону (пилообразные импульсы).

Пилообразные импульсы характеризуются длительностью рабочего хода tр, длительностью обратного хода tо и амплитудой Um (рисунок 6, б).

Для создания линейной зависимости напряжения от времени чаще всего используют заряд (или разряд) конденсатора постоянным током. Простейшая схема ГЛИН приведена на рисунок 6, а.

Когда транзистор VT закрыт, конденсатор С2 заряжается от источника питания Uп через резистор R2. При этом напряжение на конденсаторе, а значит и на выходе линейно возрастает. При поступлении на базу положительного импульса транзистор открывается, и конденсатор быстро разряжается через его малое сопротивление, чем обеспечивается быстрое уменьшение выходного напряжения до нуля – обратный ход.

ГЛИН применяются в устройствах развертки луча в ЭЛТ, в аналого-цифровых преобразователях (АЦП) и других преобразовательных устройствах.

Рисунок 6 – а) Простейшая схема для формирования линейно изменяющегося напряжения б) Временная диаграмма импульсов пилообразной формы.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Электронные генераторы. Виды и устройство. Работа и особенности

Устройства, преобразующие электроэнергию источника постоянного тока в незатухающую энергию электрических колебаний расчетной частоты и формы, называются электронные генераторы.

Электронные генераторы

Такие генераторы приобрели популярность в электронике, компьютерной технике, радиоприемниках. Генераторами может выдаваться сигнал частотой до нескольких мегагерц. Форма выходного напряжения имеет формы синусоиды, прямоугольника и пилы.

Контур колебаний получает возбуждение от наружного источника тока, появляются колебания, которые со временем затухают, так как сопротивление поглощает энергию. Чтобы колебания не затухали, в контуре нужно восполнять потерю энергии. Этот процесс восполнения выполняется положительной обратной связью. Эта связь подает в контур некоторую часть сигнала, который должен совпадать с сигналом обратной связи.

Электронные генераторы состоят из следующих частей:

  • Контур колебаний, задающий частоту генератора.
  • Усилитель, повышающий амплитуду сигнала на выходе контура колебаний.
  • Обратная связь, подающая некоторое количество энергии в контур.

Электронные генераторы используют постоянный ток для образования колебаний переменного тока, и являются схемами с положительной связью.

Классификация

Электронные генераторы делятся на несколько классов по различным параметрам. Рассмотрим основные разновидности таких генераторов.

По форме сигнала:

  • В виде синусоиды.
  • Прямоугольные.
  • В форме пилы.
  • Специальные.

По частоте:

  • Высокочастотные (более 100 килогерц).
  • Низкочастотные (менее 100 килогерц).

По возбуждению:

  • С независимым возбуждением.
  • Автогенераторы (самовозбуждение).

Автоматическим генератором называют устройство, которое самостоятельно возбуждается, без воздействия извне, преобразует поступающую энергию в колебания. Электронные генераторы выполняются по схемам, аналогичным усилителям, за исключением отсутствия питания сигнала входа. Вместо него используют обратную связь, которая является передачей некоторого количества сигнала выхода на вход.

Определенная форма сигнала создается обратной связью. Частота колебаний создается на цепях RС или LС, и зависит от времени зарядки емкости. Сигнал обратной связи приходит на вход усилителя, где повышается в несколько раз и выходит. Часть сигнала возвращается и ослабевает в несколько раз, что дает возможность поддерживать одинаковую амплитуду сигнала на выходе.

Генераторы с внешним видом возбуждения считаются усилителями мощности с определенным частотным интервалом. На его вход подается сигнал от автогенератора, усиливается определенный интервал частот.

Электронные генераторы RС

Для образования низкочастотных генераторов применяют усилители. В них вместо обратной связи монтируют RС цепи для создания некоторой частоты колебаний. Эти цепи являются фильтрами частоты, которые пропускают сигналы в специальном интервале частот и не пропускают за его пределами. По обратной связи возвращается некоторая полоса частот.

Типы фильтров

  • Низкочастотные фильтры.
  • Высокочастотные фильтры.
  • Полосовые фильтры.
  • Заграждающие фильтры.

Характеристикой фильтра является частота среза. Если взять положение ниже этой частоты, или выше, то сигнал значительно уменьшается. Заграждающие и полосовые фильтры имеют характеристику в виде ширины полосы.

На рисунке изображена цепь генератора с синусоидальным сигналом. Усиление определяется цепью обратной связи R1, R2. Для создания нулевого сдвига по фазе обратная связь подключена от выхода усилителя на неинвертирующий его вход. Цепь обратной связи выступает в качестве полосового фильтра.

Для стабилизации величины частоты пользуются кварцевыми резонаторами, которые состоят из минеральной тонкой пластины, закрепленной в держателе. Кварц славится своим пьезоэффектом. Это дает возможность применять его в качестве системы, аналогичной колебательному контуру со свойством резонанса. Частота резонанса пластин колеблется от единиц до тысяч мегагерц.

Мультивибраторы

Эти электронные генераторы создают колебания формы прямоугольника, являются 2-х каскадным усилителем с обратной связью на основе резисторов. Выходы каскадов соединены со входами. Название этого генератора объясняет наличие значительного количества гармоник.

Мультивибратор способен действовать в нескольких режимах:

  • Автоколебательный режим.
  • Синхронизация.
  • Ждущий режим.

В первом виде режима мультивибратор работает с самовозбуждением. При синхронизации на генератор оказывает воздействие внешнее напряжение с частотой импульсов. Ждущий режим подразумевает работу с внешним возбуждением.

Автоколебательный режим мультивибратора

Устройство мультивибратора включает в себя два каскада усилителя с резисторами. Выходы каскадов подключены ко входам других каскадов через емкости С1 и С2.

Мультивибраторы с аналогичными транзисторами и симметричными компонентами имеют название симметричных.

В режиме автоколебаний мультивибратор может находиться в 2-х состояниях равновесия:

  1. Один транзистор в насыщении, второй в отсечке.
  2. Первый транзистор на отсечке, другой в насыщении.

Такие положения неустойчивы. Одна схема переходит в другую с эффектом лавины с помощью обратной связи. Для оптимизации формы импульсов на выходе генератора подключают разделительные диоды в схемы коллекторов. Через диоды подключают вспомогательные резисторы.

По такой схеме после закрытия одного транзистора и уменьшения потенциала коллектора диод тоже закрывается. При этом он отключает конденсатор от цепи. Конденсатор заряжается через вспомогательный резистор. Наибольшая длина импульсов определяется параметрами частоты транзисторов.

Такой тип схемы дает возможность создать импульсы практически прямоугольной формы. В качестве недостатков можно отметить малую скважность и невозможность плавного регулирования периода колебаний.

По такой схеме резисторы R2 и R5 включены параллельно емкостям С1 и С2. Резисторы R(1, 3, 4, 6) создают делители напряжения, которые стабилизируют потенциал базы транзистора. При коммутации мультивибратора ток базы резко меняется. Это уменьшает время снижения зарядов в базе и увеличивает скорость выхода транзистора из насыщения.

Ждущий мультивибратор (одиночный)

Если мультивибратор действует в режиме автоколебаний и не имеет устойчивости, то его можно преобразовать в генератор с одной устойчивой позицией и одной неустойчивой позицией. Такие цепи имеют название одновибраторов (релаксационных реле). Чтобы перевести схему из одного состояния в другое, необходимо воздействие внешнего импульса.

В неустойчивой позиции цепь находится некоторое время, зависящее от ее параметров. Далее она скачкообразно возвращается в устойчивую позицию. Чтобы получить ждущий режим генератора, необходимо собрать следующую схему:

В исходном положении транзистор VТ1 находится в закрытом виде. При поступлении на вход плюсового импульса по транзистору идет ток коллектора. При изменении разности потенциалов на транзисторе VТ1 оно подается через емкость С2 на базу VТ2. С помощью обратной связи повышается лавинный эффект, который приводит к закрытию VТ2 и открытию VТ1.

В такой неустойчивой позиции схема находится до полного разряда емкости С2. Далее транзистор VТ2 открывается, VТ1 закрывается. Положение схемы возвращается в первоначальную позицию.

Электронный генератор

Электронный генератор

Электронные генераторы — большое множество устройств в радиотехнике и электронике (радиоэлектронике). Генератор представляет собой электронный усилитель охваченный цепью положительной обратной связи с фильтром.

Содержание

Виды электронных генераторов

  • По форме выходного сигнала:
    • Синусоидальных, гармонических колебаний (сигналов) (генератор Мейснера, генератор Хартли (индуктивная трёхточка), генератор Колпитца (ёмкостная трёхточка) и др.) [1]
    • Прямоугольных импульсов — мультивибраторы, тактовые генераторы
    • Функциональный генератор — прямоугольных, треугольных и синусоидальных импульсов
  • По частотному диапазону:
    • Низкочастотные
    • Высокочастотные
  • По принципу работы:
    • Стабилизированные кварцевым резонатором — Генератор Пирса
    • Блокинг-генераторы
    • LC-генераторы
    • RC-генераторы[2][3]
  • По назначению:
    • Генератор тактовых импульсов

Большинство генераторов являются преобразователями постоянного тока в переменный ток. Маломощные генераторы строят на однотактных усилительных каскадах. Более мощные однофазные генераторы строят на двухтактных (полумостовых) усилительных каскадах, которые имеют больший КПД и позволяют на транзисторах той же мощности построить генератор с приблизительно вдвое большей мощностью. Однофазные генераторы ещё большей мощности строят по четырёхтактной (полномостовой) схеме, которая позволяет приблизительно ещё вдвое увеличить мощность генератора. Ещё большую мощность имеют двухфазные и трёхфазные двухтактные (полумостовые) и четырёхтактные (полномостовые) генераторы. Мощные преобразователи называются силовыми инверторами и относятся к силовой электронике.

Генераторы гармонических колебаний

Генератор (производитель) электрических колебаний представляет собой усилитель с положительной обратной связью. Усилитель с отрицательной обратной связью является дискриминатором (подавителем, активным фильтром). Усилитель генератора может быть как однокаскадным, так и многокаскадным.

Цепи положительной обратной связи выполняют две функции: сдвиг сигнала по фазе для получения петлевого сдвига близкого к n*2π и фильтра, пропускающего нужную частоту. Функции сдвига фазы и фильтра могут быть распределены на две составные части генератора — на усилитель и на цепи положительной обратной связи или целиком возложены на цепи положительной обратной связи. В цепи положительной обратной связи могут стоять усилители.

Необходимыми условиями для возникновения гармонических незатухающих колебаний являются:
1. петлевой сдвиг фазы равный n*360°±90°,
2. петлевое усиление >1,
3. рабочая точка усилительного каскада в середине диапазона входных значений.
Необходимость третьего условия.
Петлевой сдвиг фазы и в триггере и в генераторе равен около 360°. Петлевое усиление в триггере почти вдвое больше, чем в генераторе, но триггер не генерирует, т.к. рабочие точки каскадов в триггере смещены на края диапазона входных значений и эти состояния в триггере устойчивы, а состояние со средней величиной входных значений — неустойчиво. Такой характеристикой обладает компаратор.
В гармоническом генераторе среднее состояние устойчивое, а отклонения от среднего состояния неустойчивые.

История

В 1887 году Генрих Герц на основе катушки Румкорфа изобрёл и построил искровой генератор электромагнитных волн.

В 1913 году Александр Мейснер (Германия) изобрёл электронный генератор Мейснера на ламповом каскаде с общим катодом с колебательным контуром в выходной (анодной) цепи с трансформаторной положительной обратной связью на сетку. [4]

Читайте также  Щетки генератора 1jz ge vvti

В 1914 году Эдвин Армстронг (США) запатентовал электронный генератор на ламповом каскаде с общим катодом с колебательным контуром во входной (сеточной) цепи с трансформаторной положительной обратной связью на сетку.

В 1915 году американский инженер из Western Electric Company Ральф Хартли, разработал ламповую схему известную как генератор Хартли, известную также как индуктивная трёхточечная схема («индуктивная трёхточка»). В отличие от схемы А. Мейсснера, в ней использовано автотрансформаторное включение контура. Рабочая частота такого генератора обычно выше резонансной частоты контура.

В 1919 году Эдвин Колпитц изобрёл генератор Колпитца на электронной лампе с подключением к колебательному контуру через ёмкостной делитель напряжения, часто называемый «ёмкостная трёхточка».

В 1932 году американец Гарри Найквист разработал теорию устойчивости усилителей, которая также применима и для описания устойчивости генераторов. (Критерий устойчивости Найквиста-Михайлова).

Позже было изобретено множество других электронных генераторов.

Устойчивость генераторов

Устойчивость генераторов складывается из двух составляющих: устойчивость усилительного каскада по постоянному току и устойчивость генератора по переменному току.

Фазовый анализ генератора Мейснера.

Генераторы «индуктивная трёхточка» и «ёмкостная трёхточка» могут быть построены как на инвертирующих каскадах (с общим катодом, с общим эмиттером), так и на неинвертирующих каскадах (с общей сеткой, с общим анодом, с общей базой, с общим коллектором).

Каскад с общим катодом (с общим эмиттером) сдвигает фазу входного сигнала на 180°. Трансформатор, при согласном включении обмоток, сдвигает фазу ещё на приблизительно 180°. Суммарный петлевой сдвиг фазы составляет приблизительно 360°. Запас устойчивости по фазе максимален и равен почти ± 90°. Таким образом генератор Мейснера относится, с точки зрения теории автоматического управления (ТАУ), к почти идеальным генераторам. В транзисторной технике каскаду с общим катодом соответствует каскад с общим эмиттером.

Фазовый анализ LC-генератора с СR положительной обратной связью

LC-генераторы на каскаде с общей базой наиболее высокочастотны, применяются в селекторах каналов почти всех телевизоров, в гетеродинах УКВ приёмников. Для гальванической развязки в цепи положительной обратной связи с коллектора на эмиттер стоит CR-цепочка, которая сдвигает фазу на 60°. Генератор работает, но не на частоте свободных колебаний контура, а на частоте вынужденных колебаний, из-за этого генератор излучает две частоты: большую — на частоте вынужденных колебаний и меньшую на частоте свободных колебаний контура. При первой итерации две частоты образуют четыре: две исходные и две суммарноразностные. При второй итерации четыре частоты производят ещё большее число суммарноразностных частот. В результате, при большом числе итераций получается целый спектр частот, который в приёмниках смешивается с входным сигналом и образует ещё большее число суммарноразностных частот. Затем всё это подаётся в блок обработки сигнала. Кроме этого, запас устойчивости работы по фазе этого генератора составляет +30°. Чтобы уменьшить шунтирование контура каскадом применяют частичное включение контура через ёмкостной делитель, но при этом происходит дополнительный перекос фазы. При одинаковых ёмкостях дополнительный перекос фазы составляет 45°. Суммарный петлевой сдвиг фазы 60°+45°=105° оказывается больше 90° и устройство попадает из области генераторов в область дискриминаторов, генерация срывается. Существует ряд формул для определения ёмкостей делителя, чтобы не сорвалась генерация, но запас устойчивости по фазе составляет менее 30°, что образно похоже на корабль плывущий с креном 60° и более градусов.

Генератор Мейснера на каскаде с общей базой, с частичным включением контура без перекоса фазы.

Если в «ёмкостной трёхточке» на каскаде с общей базой в цепи положительной обратной связи вместо CR-цепочки включить трансформатор со встречным включением обмоток, то петлевой сдвиг фазы составит около 360°. Генератор станет почти идеальным. Чтобы уменьшить шунтирование контура каскадом и не внести дополнительного перекоса фазы, нужно применить частичное включение контура без дополнительного перекоса фазы через два симметричных отвода от катушки индуктивности. Такой генератор будет излучать одну частоту, то есть будет подобен монохроматорам в оптике, и будет иметь наибольший запас устойчивости по фазе (± 90°), что образно похоже на корабль плывущий без крена.

Применение

  • Гетеродин в супергетеродинных радиоприёмниках, в телевизорах, в мобильных телефонах, в приёмопередатчиках и др.
  • Генераторы в научных и медицинских приборах.

См. также

  • Электронный усилитель
  • Фильтр
  • Автогенератор
  • Генератор Мейснера (Генератор Армстронга)
  • Генератор Хартли
  • Генератор Колпитца
  • Генератор Клаппа
  • Генератор Вачкара
  • Генератор Пирса (кварцевый)
  • RC-генератор
  • Критерий устойчивости Найквиста-Михайлова
  • Измерительный генератор
  • Гетеродин
  • Стабильность частоты

Ссылки

  • Шамшин И. Г., История технических средств коммуникации. Учеб. пособие., 2003. Дальневосточный Государственный Технический Университет.
  1. http://logic-bratsk.ru/radio/ewb/ewb2/CHAPTER2/2-8/2-8-1/2-8-1.htm На рис.8.1.а) изображён генератор Мейснера, а не генератор Хартлея
  2. http://radiomaster.ru/stati/radio/gen.php Рис.1.7 RC-генератор на транзисторе. Рис.1.8 RC-генератор с мостом Вина.
  3. http://logic-bratsk.ru/radio/ewb/ewb2/CHAPTER2/2-8/2-8-1/2-8-1.htm Рис.8.9. RC-генератор с трёхзвенной фазосдвигающей цепочкой (а) и осциллограмма выходного сигнала (б)
  4. http://historic.ru/books/item/f00/s00/z0000027/st054.shtml Радиотехника и радиофизика
  • http://radiomaster.ru/stati/radio/gen.php Генераторы синусоидальных колебаний
  • http://projects.org.ua/project/generators/generators.html Генераторы

электронный генератор — elektroninis generatorius statusas T sritis Standartizacija ir metrologija apibrėžtis Elektroninis įtaisas nuolatinės srovės šaltinio arba pirminių elektrinių virpesių energijai versti tam tikro dažnio ir pavidalo elektrinių virpesių energija.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

электронный генератор — elektroninis generatorius statusas T sritis fizika atitikmenys: angl. electronic generator; electronic oscillator vok. elektronischer Generator, m rus. электронный генератор, m pranc. oscillateur électronique, m … Fizikos terminų žodynas

Генератор сигналов — Генератор сигналов это устройство, позволяющее получать сигнал определённой природы (электрический, акустический или другой), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.).… … Википедия

Генератор колебаний электрический — Электронные генераторы большое множество устройств в радиотехнике и электронике (радиоэлектронике). Генератор представляет собой электронный усилитель охваченный цепью положительной обратной связи с фильтром. Содержание 1 Виды генераторов 2… … Википедия

Генератор переменного тока — Эта страница требует существенной переработки. Возможно, её необходимо викифицировать, дополнить или переписать. Пояснение причин и обсуждение на странице Википедия:К улучшению/23 октября 2012. Дата постановки к улучшению 23 октября 2012 … Википедия

Генератор, управляемый напряжением — Микроволновый (12 18 ГГц) ГУН Генератор, управляемый напряжением (ГУН) электронный генератор для управления частотой колебаний при помощи напряжения … Википедия

Генератор с мостом Вина — (выделен зеленым) на операционном усилителе. R1=R2, C1=C2 Генератор с мостом Вина разновидность … Википедия

ЭЛЕКТРОННЫЙ МИКРОСКОП — прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объекта, в к ром вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30 1000 кэВ и более) в условиях глубокого вакуума. Физ … Физическая энциклопедия

ГЕНЕРАТОР ИЗМЕРИТЕЛЬНЫЙ — мера, воспроизводящая дискретный или непрерывный ряд значений параметров перем. электрич. величины (напряжения, тока) в определ. диапазоне. Применяется в измерит. практике, а также для поверки и регулировки радиотехнических и вычислительных… … Физическая энциклопедия

Виды цифровых генераторов

Синусоидальный сигнал есть, по сути, решение уравнения Y= Sin(X), при линейно изменяющемся значении аргумента X. Для получения цифрового сигнала из микроконтроллера нам необходимо подать значения функции на цифроаналоговый преобразователь (ЦАП). Это значит, что для получения синусоидального сигнала, нам необходимо знать значения функции Y при каждом значении аргумента X (по сути X определяет значение фазы сигнала). Можно вычислять все значения функции прямо в микроконтроллере, но для обеспечения высокой точности вычисляемых значений необходим высокопроизводительный процессор, или модуль для работы с плавающей точкой. Вычисление значений в микроконтроллере может занять продолжительное время, поэтому для обеспечения быстроты вычисления берут готовые значения функции и загружают их в память. Для обеспечения плавности выходного сигнала, для уменьшения погрешности связанной с нелинейностью характеристики цифроаналогового преобразователя, необходимо как можно большее количество значений синуса. Таким образом, в памяти будут готовые отсчеты синуса. Для того чтобы эти отсчеты превратились в синус, их нужно каким-то образом растянуть по времени, чтобы каждый отсчет подавался на ЦАП через определенный промежуток времени после предыдущего. Для этого необходим генератор опорной частоты. Такой генератор будет выдавать импульсы постоянной скважности. Эти импульсы, в простейшем случае, поступают на счетчик, а счетчик в свою очередь выдает на выходе последовательность возрастающих кодов. Код на выходе счетчика будет указывать на адрес очередного отсчета в памяти (ПЗУ). ПЗУ соответственно кодам выдает на своем выходе значения функции, содержащиеся в памяти по этим адресам, которые передаются в ЦАП и на выходе ЦАПа будет синус с идеальной частотой. Частота синуса будет соответствовать частоте тактового генератора. Для обеспечения перестройки по частоте нужно каким-либо образом регулировать частоту опорного генератора. В простейшем случае между счетчиком и генератором ставят делитель частоты. Такой делитель позволяет перестаивать частоту в определенных пределах. Предел перестройки зависит от разрядности сумматора и частоты опорного генератора. Перестройка в таком случае будет возможна только на определенные значения, так как деление возможно только на числа, кратные 2.

Простейшая схема такого генератора показана на рисунке 1. В его состав входит генератор опорной частоты (G). Делитель, в который загружается код частоты (коэффициент деления), счетчик (СТ), ПЗУ, ЦАП и фильтр. Фильтр в данном случае необходим для того, чтобы сглаживать цифровой сигнал на выходе. ЦАП – цифровое устройство, которое выдает только определенный уровень сигнала. Чем меньше частота дискретизации, тем более ярко выражена ступенчатая характеристика выходного сигнала. Для того чтобы убрать погрешность, вносимую частотой дискретизации, на выходе применяется фильтр сигналов. В простейшем случае, это простая RC-цепочка, но необходимо учитывать скоростные характеристики ЦАП, так как на высоких частотах может отфильтровываться полезный сигнал.

Здесь рассмотрена самая простая схема DDS. Многие элементы в ней можно заменить и доработать. Например, если заменить счетчик на более сложное устройство, т.н. аккумулятор фазы, то у нас появятся больше возможностей, таких как перестройка по частоте без фазового сдвига или, например, возможность использовать четверть периода значений синуса, вместо полного периода, но в рамках данной статьи такие усложнения рассматриваться не будут.

Сейчас DDS выполняются как отдельные микросхемы. В такую микросхему достаточно загрузить параметры нужного сигнала и подключить генератор опорной частоты, а на выходе мы получим цифровую синусоиду, которую достаточно лишь отфильтровать с заданными параметрами. Такие генераторы позволяют получать частоту до 1.4 ГГц. У них в свою очередь есть один недостаток. Генераторы прямого цифрового синтеза чаще всего используются именно как генераторы частоты, поэтому амплитуда выходного сигнала не стабильна.

Другим способом генерации сигнала синусоидальной формы с помощью контроллера, является метод ШИМ + пассивный RC фильтр. ШИМ – широтно-импульсная модуляция. Она позволяет, регулируя скважность импульсов, получать нужную постоянную амплитуду сигнала. Чем шире импульс, тем выше выходное напряжение на фильтре. Напряжение можно менять в пределах от нуля до напряжения питания. Таким образом, если задать определенную программу для регулирования скважности импульсов, то на выходе можно получить сигнал любой формы, в том числе синусоидальный. В самом простом случае схема показана на рисунке 2.

Такой генератор является дешевым, и самое главное наиболее легко реализуемым способом преобразования цифрового сигнала в аналоговый с помощью микроконтроллера. Он не требует специальных микросхем или каких-либо сложных схемотехнических решений. Единственное, что необходимо при создании такого генератора, это расчет выходного фильтра на заданную частоту среза, чтобы он не срезал полезный сигнал. Правда, достигнуть высоких метрологических характеристик на таком генераторе невозможно, так как трудно добиться низкого коэффициента гармонических искажений. Низкий уровень гармонических искажений можно достичь с помощью еще одного варианта генератора.

Читайте также  Щетки генератора с интегральным реле

Третий вариант генератора основывается на схеме, которая называется «мост Вина». Суть этой схемы в том, что используется усилитель с двумя RC-цепочками в обратной связи. Одной последовательной и одно параллельной. Схема такого генератора представлена на рисунке 3.

Для данной схемы необходимо учесть то, что элементы в RC-цепочке должны быть строго одинаковыми. Иначе схема не будет стабильной. Для уменьшения этих эффектов применяют разные хитрости, например автоматическое управление усилением и другие хитрости. В простейшем случае автоматическое управление осуществляется каким-либо нелинейным элементом, например лампочкой. Но перестройка такого генератора по частоте затруднена. Нужно использовать переменные конденсаторы, что усложняет схему еще на порядок. Такой метод хорош, но в основном для генерации какой-либо определенной частоты, либо частоты с малым диапазоном регулировки.

Существуют разные варианты и модификации представленных выше схем. Кроме этих схем существуют аналоговые решения, которые не были здесь описаны из-за несоответствия тематике статьи. В заключении хочу сказать, что каждая схема должна выбираться и прорабатываться возможная ее реализация в зависимости от задачи, которую необходимо выполнить. Передо мной стоит задача создать прецизионный генератор синусоидального сигнала, который может одновременно выдавать высокостабильный синусоидальный сигнал и добавлять в сигнал гармоники более высокого порядка. Для выполнения этой задачи наилучшим выходом будет расчет значений функции синуса непосредственно в микроконтроллере с передачей значений на ЦАП. Такая реализация позволит мне учесть недостатки каждой схемы и проработать техническую реализацию, необходимую конкретно для моей задачи. Можно одновременно сделать стабильную амплитуду, убрать гармонические искажения, вносимые особенностью схемы и получить довольно стабильный генератор. И конечные погрешности будут зависеть только от того, какие элементы будут выбраны, и какая степень упрощения алгоритма взята. Таким образом, при неизменности основной структуры, можно получить гибкое решение определенного класса задач.

Если вас интересует какой-либо материал на схожую тему, или вообще что-то из сферы измерительных приборов и их проектирования, то я бы мог попробовать написать какой-либо материал, чтобы осветить ваш вопрос в более простом и понятном ключе

Электрогенераторы. Виды и устройство. Применение и как выбрать

Для питания электроприборов в случае отсутствия проложенной линии электропередач или при аварийном отключении напряжения используются электрогенераторы. Они представляют собой технические устройства, которые вырабатывают электричество, потребляя при этом бензин, дизельное топливо или газ.

Что такое электрогенератор и его конструкция

Прибор представляет собой устройство, состоящее из двигателя внутреннего сгорания, который обеспечивает раскручивание якоря небольшого электромотора, сделанного по принципу генератора. В результате постоянного поддержания высоких оборотов создается электрическое напряжение, снимаемое на специальные клеммы и выводимое на внешнюю розетку, используемою для подключения потребителей энергии.

Электрогенераторы могут быть рассчитаны на кратковременное включение и на постоянную работу. По этому критерию они делятся на резервные источники питания и постоянные. Резервные применяются в тех случаях, когда требуется обеспечить питание приборов на короткий период, пока не будет возобновлено электроснабжение сети. Постоянные станции применяются, когда подключение к линии электропередач вообще отсутствует. В этом случае генератор является единственным источником энергии, поэтому работает непрерывно. В зависимости от предназначения оборудование генератора может оснащаться системой воздушного или водяного охлаждения. Воздушные обеспечивают эффективное снижение температуры корпуса устройства на несколько часов, а водяные не допускают перегрев вообще.

Стоит учитывать, что во время работы двигатель создает большой шум, что не всегда приемлемо. По этой причине электрогенераторы могут производиться не только в открытом, но и в шумопоглощающем корпусе, который значительно снижает уровень шума. Устройство с открытым корпусом представляет собой силовую раму, на которую устанавливается ДВС, топливный бак и генератор, при этом они являются открытыми, и все составляющие легко просматриваются. Устройство в шумопоглощающем корпусе имеет специальный защитный кожух, препятствующий распространению звука и вибрации.

Виды электрогенераторов

Электрические генераторы принято разделять на 3 вида в зависимости от используемого топлива для выработки энергии:

  1. Бензиновые.
  2. Дизельные.
  3. Газовые.

Каждая разновидность имеет свои достоинства и недостатки, которые нужно оценить и выбирать подходящую модель уже отталкиваясь от задач, запланированных для генератора.

Бензиновый

Бензиновые станции работают на бензине, за что и получили свое название. Данная категория устройств является самой дешевой при покупке, но очень дорогой в обслуживании. Работающие на бензине генераторы имеют компактный корпус и сравнительно небольшой вес, что делает такие станции максимально мобильными. Зачастую их можно разместить в багажнике легкового автомобиля.

Благодаря дешевизне их преимущественно выбирают для использования в качестве аварийного источника питания. Включение на несколько часов 5-10 раз в год потребует не таких уж и больших затрат на покупку бензина, что на фоне низкой стоимости самой станции является очень выгодным решением. В тех случаях, когда генератор должен работать постоянно, бензиновый вариант совершенно неприемлем. Во-первых, потребуется ежедневно тратить большие суммы на заправку горючего, а во-вторых, моторесурс таких устройств сравнительно короткий.

Дизельный

Дизельные электрогенераторы являются более экономичными в плане потребления топлива, но стоят значительно дороже, а также весят больше. Их моторесурс в 3-4 раза выше, чем у бензиновых аналогов. Дизельная станция может работать непрерывно по 10 и более часов на одной заправке. Такое оборудование редко выбирают для резервного питания частного дома в связи с дороговизной. Практическая экономия топлива при нескольких включениях в год будет незначительной и не покроет затраты на покупку генератора.

Дизельные станции выбирают в тех случаях, когда требуется постоянная выработка электричества. Это могут быть строительные объекты, которые еще не подключены к центральной сети электроснабжения, а также загородные участки и дачи, с такой же проблемой. Стоит отметить, что устройство на дизельном топливе являются более мощными и стойкими к поломкам, но очень шумными.

Газовый

Газовые генераторы еще называют двухтопливными, поскольку они оснащены гибридным двигателем, который может работать как на бензине, так и на баллонном газе. Такие устройства используют в качестве резервного источника энергии. Станция вырабатывает одинаковое количество электричества как на газе, так и на бензине. При питании гибридного двигателя из баллона существенно снижаются затраты на выработку энергии, поскольку стоимость газа намного ниже чем бензина. Стоит отметить, что двухтопливные станции довольно тяжелые и не такие компактные как бензиновые. Их моторесурс тоже не идет ни в какое сравнение с дизельными системами.

Однофазные или трехфазные

Электрогенераторы бывают однофазные и трехфазные. Первые используется для питания бытовых приборов, которые рассчитаны для работы от сети 220В и 50Гц. Они выбираются для установки в частные дома и офисы, где основная задача заключается в обеспечении работы бытовых приборов, таких как телевизор, холодильник, компьютер, водяной насос, фен, зарядка телефона, кондиционер и прочее. Также однофазные генераторы применяют строители при работе на объектах, поскольку именно от такой сети питаются шуруповерты, дрели, перфораторы, компрессоры и прочее оборудование.

Трехфазные электрогенераторы выдают 380 вольт. Для домашнего использования они применяются редко. Их применяют для питания промышленного оборудования. Такая станция позволит продолжить производство даже в том случае, если электроснабжение было остановлено. Особенность трехфазного генератора заключается в том, что на его корпусе имеется две розетки. Первая выдает одну фазу и обеспечивает питание обычных бытовых приборов на 220В, а вторая выводит 380В для промышленного оборудования.

Расчет мощности

Предлагаемые на рынке электрогенераторы имеют большой диапазон мощности от 0,6 и до 10 и выше кВт. Чем производительней станция, тем она дороже, шумнее и менее экономичная. По этим причинам следует подойти к выбору мощности генератора со всей серьезностью. Если мощности будет недостаточно, то при критической нагрузке устройство будет отключаться или просто выйдет из строя. В том случае, когда взять слишком высокий запас производительности, то устройство будет выдавать неоправданно большой поток, который не будет использоваться. В результате будет значительный расход горючего, что существенно увеличит себестоимость выработанной энергии.

Чтобы выбрать электрический генератор требуемых параметров следует провести расчет потребление энергии каждого прибора, который будет работать от него.

К примеру, требуется обеспечение одновременного питания:

  • Холодильника на 700 Вт.
  • Кондиционера на 1000 Вт.
  • Лампы на 23 Вт.
  • Компьютера на 50 Вт.

В результате подсчета можно определить, что для одновременного питания всех этих потребителей необходимо, чтобы генератор выдавал 1773 Вт. Кроме этого, нужно учитывать, что отдельные приборы в момент включения не доли секунды потребляют больше энергии, чем непосредственно в период нормальной работы. Данное явление называется коэффициент пускового тока. У холодильника и кондиционера он составляет 3,5. По этой причине в момент включения холодильник резко потребует 2450 Вт, а кондиционер 3500 Вт.

Таким образом, чтобы приборы с высоким коэффициентом пускового тока смогли работать, нужен генератор с мощностью не на 1773, а на 6023 Вт. К этому показателю нужно прибавить запас на 20%, который позволит исключить остановку и сгорание генератора при небольших скачках потребления, в случае включения дополнительной лампочки, утюга или фена. Фактически для таких потребителей нужна станция мощностью 7 кВт и более. Нужно отметить, что в указанном примере предложены приборы с очень высоким коэффициентом пускового тока. Если использовать более скромные потребители, которые не тянут много энергии при включении, то для частного дома, где электричество отключено на несколько часов, нужен только свет, телевизор и компьютер, поэтому даже генератор на 3 кВт справится с легкостью. Холодильник вполне постоит несколько часов выключенным.

Типы запуска По типу запуска электрогенераторы делятся на 4 группы с:

  1. Ручным стартером.
  2. Электростартером.
  3. Дистанционным запуском.
  4. Системой ATS.

Генератор с ручным стартером имеет специальный шнурок, при вытягивании которого обеспечивается раскручивание коленвала, что и запускает двигатель. Это самые бюджетные устройства. Чтобы запустить такой генератор может понадобиться несколько раз дернуть за пусковой шнур, что требует некоторых усилий, особенно в холодную погоду. Завести двигатель ручным способом в мороз очень тяжело, особенно у мощного генератора с высокой компрессией мотора.

Генераторы с электростартером запускаются как и любой автомобиль. Достаточно просто вставить ключ и повернуть. Стартер работает от аккумулятора. Также бывают генераторы с дистанционным запуском. Они являются модификацией модели с электростартером, которые дополнительно оснащены пультом дистанционного управления. Пульт напоминает обычную автосигнализацию. Он позволяет провести включение не выходя из дома.

Электрогенераторы с системой ATS работают автоматически. Они оборудованы специальным прибором, который постоянно контролирует наличие в системе электричества. В случае его отключения проводится автоматический запуск станции, и питание электроприборов возобновляется. При включении электроснабжения генератор сам отключается. Это позволяет исключить перерасход топлива в те моменты, когда это уже не нужно.

Источник: nevinka-info.ru

Путешествуй самостоятельно