Электродвигатели асинхронные трехфазные с генератором
- Электродвигатели асинхронные трехфазные с генератором
- Асинхронные электродвигатели
- Схема генератора из асинхронного двигателя
- При переделывании двигателя в генератор, самостоятельное создание движущегося магнитного поля является одним из основных и обязательных условий.
- Устройство генератора
- Изготовление генератора из двигателя
- Оценка уровня эффективности – выгодно ли это?
- Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:
- В заключение несколько общих советов.
- Асинхронный электродвигатель в качестве генератора
- Подписка на рассылку
- Генератор из асинхронного двигателя: схема, таблица, инструкция, как сделать своими руками + фото от мастера!
- Зачем нужны асинхронные генераторы?
- Типы асинхронных генераторов
- Устройство асинхронных генераторов
- Как функционирует генератор
- Как сделать генератор своими руками
- Особенности использование трехфазного двигателя в качестве генератора
- Подготовка к работе
- Выбор электромотора
- Особенности разных схем подключения генератора
- Принцип работы самодельного генератора
- Рекомендации по эксплуатации и электробезопасности
- Асинхронный двигатель в режиме генератора
- Как самому переделать генератор из асинхронного двигателя?
- Что собой представляет и как работает
- Что такое электрический генератор?
- Работа двигателя в режиме генератора
- Как самостоятельно собрать асинхронный генератор?
- Виды генераторов на базе двигателей
Электродвигатели асинхронные трехфазные с генератором
Электрики давно научились извлекать пользу из принципа обратимости электрических машин: когда попадает в руки вроде бы ненужный трехфазный движок, то его можно раскрутить от бытовой сети или вырабатывать бесплатную электрическую энергию.
Но в данном материале мы не собираемся «вешать лапшу» про свободную и бесплатную энергию или про «гениев», подключивших лампочку к батарейке. И так:
Асинхронные электродвигатели
В статье рассказано о том, как построить трёхфазный (однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока. Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту.
Асинхронные электродвигатели – самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.
Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части — статора и подвижной части — ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название — короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом.
Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.
Генератор асинхронного или индукционного типа представляет собой особую разновидность устройств, использующую переменный ток и имеющую способность воспроизведения электроэнергии. Главной особенностью является совершение довольно быстрых поворотов, которые делает ротор, по скорости вращения этого элемента он в значительной степени превосходит синхронную разновидность.
Одним из главных преимуществ является возможность использования данного устройства без существенных преобразований схемы или длительного настраивания.
Однофазную разновидность индукционного генератора можно подключить путем подачи на него необходимого напряжения, для этого потребуется подсоединение его к источнику питания. Однако, ряд моделей производит самовозбуждение, эта способность позволяет им функционировать в режиме, независимом от каких-либо внешних источников.
Осуществляется это благодаря последовательному приведению конденсаторов в рабочее состояние.
Схема генератора из асинхронного двигателя
В фактически любой машине электрического типа, сконструированной по типу генератора, имеются 2 разные активные обмотки, без которых невозможно функционирование устройства:
- Обмотка возбуждения, которая находится на специальном якоре.
- Статорная обмотка, которая отвечает за образование электрического тока, данный процесс происходит внутри нее.
Для того, чтобы наглядно представить и точнее понять все процессы, происходящие во время функционирования генератора, наиболее оптимальным вариантом будет подробнее рассмотреть схему его работы:
- Напряжение, которое подается от аккумулятора или любого иного источника, создает магнитное поле в якорной обмотке.
- Вращение элементов устройства вместе с магнитным полем можно реализовать разными способами, в том числе и вручную.
- Магнитное поле, вращающееся с определенной скоростью, порождает электромагнитную индукцию, благодаря чему в обмотке появляется электрический ток.
- Подавляющее большинство используемых на сегодняшний день схем не имеет возможностей для обеспечения якорной обмотки напряжением, это связано с наличием в конструкции короткозамкнутого ротора. Поэтому, вне зависимости от скорости и времени вращения вала, питающие клеммы устройства все равно будут обесточены.
При переделывании двигателя в генератор, самостоятельное создание движущегося магнитного поля является одним из основных и обязательных условий.
Устройство генератора
Перед тем, как предпринимать какие-либо действия по переделыванию асинхронного двигателя в генератор, необходимо понять устройство данной машины, которое выглядит следующим образом:
- Статор, который оснащен сетевой обмоткой с 3 фазами, размещенной по его рабочей поверхности.
- Обмотка организована таким образом, что напоминает по своей форме звезду: 3 начальных элемента соединяются между собой, а 3 противоположных стороны соединены с контактными кольцами, которые не имеют никаких точек соприкосновений между собой.
- Контактные кольца имеют надежный крепеж к валу ротора.
- В конструкции имеются специальные щетки, которые не совершают никаких самостоятельных движений, но способствуют включению реостата с тремя фазами. Это позволяет осуществлять изменение параметров сопротивления обмотки, находящейся на роторе.
- Нередко, во внутреннем устройстве присутствует такой элемент, как автоматический короткозамыкатель, необходимый для того, чтобы закоротить обмотку и остановить реостат, находящийся в рабочем состоянии.
- Еще одним дополнительным элементом устройства генератора может являться специальное приспособление, которое разводит щетки и контактные кольца в тот момент, когда они проходят стадию замыкания. Подобная мера способствует значительному уменьшению потерь, отводимых на трение.
Изготовление генератора из двигателя
Фактически, любой асинхронный электродвигатель можно собственными руками переделать в устройство, функционирующее по типу генератора, который затем допускается использовать в быту. Для этой цели может подойти даже двигатель, взятый из стиральной машинки старого образца или любого иного бытового оборудования.
Чтобы данный процесс был благополучно реализован, рекомендуется придерживаться следующего алгоритма действий:
- Снять слой сердечника двигателя, благодаря чему будет образовано углубление в его структуре.
- Осуществить это можно на токарном станке, рекомендуется снять 2 мм. по всему сердечнику и проделать дополнительные отверстия с глубиной около 5 мм.
- Снять размеры с полученного ротора, после чего из жестяного материала изготовить шаблон в виде полосы, который будет соответствовать габаритам устройства.
- Установить в образовавшемся свободном пространстве неодимовые магниты, которые необходимо заранее приобрести. На каждый полюс потребуется не менее 8 магнитных элементов.
- Фиксацию магнитов можно осуществить при помощи универсального суперклея, но необходимо учитывать, что при приближении к поверхности ротора они будут менять свое положение, поэтому их необходимо крепко удерживать руками пока каждый элемент не приклеится. Дополнительно рекомендуется использовать во время этого процесса защитные очки, чтобы избежать попадания брызг клея в глаза.
- Обернуть ротор обычной бумагой и скотчем, который потребуется для ее фиксации.
- Торцовую часть ротора залепить пластилином, что обеспечит герметизацию устройства.
- После совершенных действий необходимо произвести обработку свободных полостей, между магнитными элементами. Для этого оставшееся между магнитами свободное пространство необходимо залить эпоксидной смолой. Удобнее всего будет прорезать специальное отверстие в оболочке, преобразовать его в горлышко и залепить границы при помощи пластилина. Внутрь можно заливать смолу.
- Дождаться полного застывания залитой смолы, после чего защитную бумажную оболочку можно устранить.
- Ротор необходимо зафиксировать при помощи станка или тисков, чтобы можно было провести его обработку, которая заключается в шлифовании поверхности. Для этих целей можно использовать наждачную бумагу со средним параметром зернистости.
- Определить состояние и предназначение проводов, выходящих из двигателя. Двое должны вести к рабочей обмотке, остальные можно обрезать, чтобы не запутаться в дальнейшем.
- Иногда процесс вращения осуществляется довольно плохо, чаще всего причиной являются старые износившиеся и тугие подшипники, в таком случае их можно заменить новыми.
- Выпрямитель для генератора можно собрать из специальных кремниевых диодов, которые предназначены именно для этих целей. Также потребуется контроллер для зарядки, подходят фактически все современные модели.
После совершения всех названных действий, процесс можно считать завершенным, асинхронный двигатель был преобразован в генератор такого же типа.
Оценка уровня эффективности – выгодно ли это?
Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?
Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.
Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.
Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.
Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.
Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:
В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.
Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.
При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.
Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.
В заключение несколько общих советов.
1. Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.
2. По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.
3. Обратите внимание на тепловой режим генератора. Он «не любит» холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.
4. Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы — 2/3 общей мощности генератора.
5. Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме «холостого хода» должно на 4…6 % превышать промышленное значение 220/380 В.
Асинхронный электродвигатель в качестве генератора
Подписка на рассылку
- ВКонтакте
- ok
- YouTube
- Яндекс.Дзен
- TikTok
Рисунок 1. Трехфазная асинхронная электрическая машина Асинхронные электродвигатели были разработаны еще в конце 19-го века М. О. Доливо-Добровольским и с тех пор не претерпели каких-либо действительно значительных изменений. Тем не менее именно такие электрические машины, особенно их модификации с короткозамкнутым ротором, получили наибольшее распространение практически во всех отраслях человеческой деятельности, что объясняется их универсальностью, надежностью и на порядок более низкой ценой в сравнении с двигателями постоянного тока.
С учетом приведенных выше качеств выглядит вполне логичным преимущественное использование именно асинхронных электродвигателей в качестве генераторов. Причем по сугубо экономическим соображениям это делается не только тогда, когда необходимо получить переменный, но и постоянный ток.
Генератор 380 В на базе трехфазной асинхронной электрической машины
Рисунок 2. Стандартная схема подключения асинхронного электродвигателя в качестве генератора Трехфазный генератор 380 В на базе асинхронного электродвигателя переменного тока получают путем отключения питающей сети и подсоединения его рабочего вала к валу механического двигателя. Такая конфигурация благодаря принципу обратимости электрических машин позволяет при достижении синхронной частоты вращения снять с зажимов статорной обмотки некоторую ЭДС, генерируемую остаточным магнитным полем. Если при этом к зажимам статорной обмотки подключить конденсаторную батарею, то в соответствующих обмотках потечет емкостной ток, выполняющий в данном случае роль намагничивающего фактора.
Критическим параметром всей установки является емкость конденсаторной батареи, которая должна превышать некоторое пороговое значение С0 — только при выполнении данного условия возможно самовозбуждение генератора и установление на обмотках его статора симметричной трехфазной системы напряжений.
Нетрудно догадаться, что конденсаторная батарея, точнее — ее емкость, играющая ключевую роль во всей схеме, является самым уязвимым местом. Дело в том, что поддержание заданного напряжения при увеличении нагрузки на генератор, особенно ее реактивной составляющей, для поддержания необходимого напряжения требуется постоянно наращивать емкость конденсаторной батареи путем увеличения подключенных конденсаторов. В цифрах картина выглядит следующим образом:
Стоит отметить, что некоторого смягчения воздействия реактивной составляющей позволяют достигнуть компенсаторы реактивной мощности серий КМ1/КМ2. При желании их аналоги можно изготовить и самостоятельно на основе конденсаторов МБГТ/ МБГП/ МБГО и др. за исключением электролитических.
Однофазный генератор 220 В на базе асинхронного электродвигателя переменного тока
Рисунок 3. Схема подключения однофазного генератора 220 В на базе асинхронного электродвигателя переменного тока Как уже отмечалось выше, трехфазные генераторы используются далеко не только для получения переменного напряжения. Еще одним распространенным способом использования асинхронного электродвигателя в качестве генератора является подключение, подразумевающее использование конденсаторной батареи в тандеме только с одной обмоткой. Такой ход позволяет уменьшить емкость конденсаторов и снизить нагрузку на первичный механический двигатель, что, в свою очередь, позволяет сэкономить недешевое природное топливо, однако и вырабатываемая мощность значительно падает. Экономический эффект наиболее ощутим при частой работе генератора в режиме холостого хода, что особенно актуально для бытового использования.
Емкость используемых в данной схеме конденсаторов напрямую зависит от характера нагрузки: активная нагрузка (СВЧ, освещение помещений, паяльные станции) требует меньшей емкости, индуктивная (телевизоры, холодильники, стиральные машины) — большей.
Генератор из асинхронного двигателя: схема, таблица, инструкция, как сделать своими руками + фото от мастера!
В настоящее время хорошо известен способ превращения электрической энергии во вращательное движение. Для этого человечество изобрело электродвигатели. Они имеют множество разновидностей, начиная от двигателей постоянного тока и заканчивая асинхронными двигателями переменного тока, но суть этого преобразования одна — электричество преобразуется во вращательное движение.
И без электричества человечество слабо представляет себе собственное существование. Поэтому в местах где нет электричества или существуют его серьезные перебои необходимость генераторов в сегодняшнем мире жизненно необходима.
Причем если существует бесплатный источник вращения, то ли вода или ветер, то такой генератор превращается в мини электростанцию. Так как стоимость электричества создаваемого бензиновым или дизельным генератором достаточно велика.
Краткое содержимое статьи:
Зачем нужны асинхронные генераторы?
Если рассмотреть фото асинхронных генераторов, то легко заметить что с первого взгляда практически невозможно отличить их от обыкновенных двигателей.
Суть в том, что это практически одни и те же электрические машины используемые в другом направлении и имеющие разные схемы подключения. Поэтому достаточно просто переделать одну такую машину в другую.
Эта статья поможет разобраться в том как это осуществить на практике. В современном мире множество генераторов и большинство из них асинхронные. Так как значительным преимуществом таких электрических машин является их простота, надежность и легкость в наладке системы.
Типы асинхронных генераторов
Если рассмотреть виды асинхронных генераторов, то их все можно разделить на две категории по виду электроэнергии которые они вырабатывают. Это однофазные и трех фазные.
По способу возбуждения генератора существуют модели с внешним источником возбуждения, для этого нужен дополнительный источник энергии и генераторы с самовозбуждением, которые могут работать совершенно автономно.
Именно такие генераторы можно применять для мини электростанций.
Устройство асинхронных генераторов
При рассмотрении устройства асинхронных генераторов, необходимо обратить особое внимание на основные элементы электрической машины без которых он не сможет существовать, а именно:
- Ротор генератора — это элемент вращения, на котором наводится электродвижущаяся сила. Именно вал ротора и является тем элементом, который приводится в движение. Обычно обладает короткозамкнутыми обмотками.
- Статор или статарная обмотка неподвижный элемент крепящийся к корпусу генератора и внутри которого находится ротор. Именно в этой обмотке индуцируется рабочее напряжение генератора.
- Корпус генератора.
- Подшипники, удерживающие ротор в рабочем положении.
- Элементы безопасности такие как, термореле, коротко замыкатель и щетки регулятора.
Как функционирует генератор
Принцип работы асинхронных генераторов изучался еще в средней школе. При вращении ротора на нем наводится ЭДС создающая вращающееся магнитное поле. Это вращающееся магнитное поле вырабатывает в катушке статора электромагнитную индукцию, которая и снимается с генератора.
Важнейшим недостатком таких генераторов является невозможность регулировки получаемого в результате генерации напряжения.
Поэтому чаще всего такое напряжение подается на полупроводниковый выпрямительный мост и превращается в постоянное. Удобное для дальнейшего применения.
Как сделать генератор своими руками
Инструкция как сделать асинхронный генератор достаточно проста. Для этого достаточно найти рабочий асинхронный электродвигатель.
Особенности использование трехфазного двигателя в качестве генератора
Для организации альтернативного источника питания в случае пропажи напряжения в бытовой или промышленной электросети удобно использовать генератор. Сделать его можно без особого труда из трехфазного асинхронного электромотора. Существует несколько вариантов подключения.
Когда пропадает напряжение в стационарной электросети, ток можно получить с помощью альтернативного источника питания – генератора. Это важное, а иногда просто незаменимое приспособление, как для промышленного объекта, так и для частного домовладения. Сделать генератор для дома, дачного участка или мастерской можно из трехфазного асинхронного двигателя своими руками. Рассмотренный далее пример качественного генераторного устройства дает возможность запускать в работу и однофазные бытовые электроприборы, и трехфазное оборудование – правда поочередно, а не одновременно.
Подготовка к работе
Чтобы создать самодельный генератор из электрического трехфазного двигателя, нужно знать, как он работает, а также иметь под рукой необходимые детали. За основу берется силовой агрегат асинхронного типа. Здесь применяется принцип обычной динамо-машины, когда вращательное движение вала электромотора создается принудительным путем. Чтобы отключенный от сети мотор стал источником электроэнергии, необходимо на его якорь передать крутящий момент с помощью механической энергии. Для этого лучше всего подходит двигатель внутреннего сгорания – как бензиновый, так и экономичный газовый или мощный дизельный. Его подсоединяют к электромотору через амортизирующую муфту, чтобы вращение ротора было более плавным.
Хотя получить механическую энергию можно и другим путем. При благоприятных природных и погодных условиях совершенно бесплатно можно задействовать водный поток или ветер. Об этом хорошо знали наши предки, еще много лет назад строя, например, водяные и ветряные мельницы. В наши дни так можно не только обеспечить автономное питание для электроприборов, но также существенно сэкономить на оплате за электроэнергию. Известно даже, что некоторые родовые и религиозные общины, по своим причинам отказавшиеся от поставляемого государством электричества, для вращения ротора электромотора используют запряженных особым способом лошадей. Получаемая таким образом механическая энергия характеризуется еще и реальными живыми лошадиными силами.
Выбор электромотора
Основой для рассматриваемого генератора станет асинхронный трехфазный электрический двигатель. Необязательно покупать новую модель. Например, достаточно часто такие силовые агрегаты, будучи еще в приличном рабочем состоянии, списываются на различных производственных предприятиях после их модернизации. Затем их можно приобрести по вполне доступной цене или же вовсе достать бесплатно.
Здесь главное обратить внимание на такие моменты:
- ротор должен быть короткозамкнутого или фазного типа;
- статор подключается через три отдельных обмотки с возможностью их взаимного соединения по методу «звезда» или «треугольник».
Вращающейся частью агрегата является ротор (он же якорь), а статор находится в неподвижном состоянии. Оба этих элемента конструкции состоят из металлических пластин с пазами, куда накручены обмоточные провода. Выходы статорных обмоток через перемычки подключаются к клеммной коробке и источнику питания. Для формирования нужного тока в витках каждая фаза статора должна получать одинаковое напряжение с угловым смещением примерно на треть окружности.
Подключение ротора зависит от его типа. Для создания генератора лучше всего подходит короткозамкнутый вариант, имеющий достаточно простую схему подключения. Здесь концы кольцевых перемычек соединяются и закорачиваются, а прижимные контактные щетки отсутствуют. Получается несложная и надежная конструкция, пригодная для множества целей, в том числе и для самодельного генераторного привода. У фазного ротора обмоточные концы соединены с токопроводящими кольцами, соединенными с прижимными щетками и пусковой схемой. Строение такого якоря сложнее, чем короткозамкнутого. Подключение требует больше времени и внимания. Кроме того, нужно постоянно контролировать частоту оборотов и следить, чтобы не отошли щетки или не разомкнулись контакты на кольцах. Хотя из фазного можно легко сделать короткозамкнутый ротор, просто закоротив обмотки между собой в обход контактных колец.
Особенности разных схем подключения генератора
От способа подсоединения статорных обмоток напрямую зависит эффективность работы генератора и его технические параметры. Существует несколько вариантов, из которых самые распространенные такие:
- Методика «Звезда» считается классической и наиболее практичной для монтажа конденсаторных батарей, которые могут подключаться к одной или двум обмоткам. В первом случае будут доступны по одной двухфазная и трехфазная линии, а во втором можно будет запускать от генератора две группы однофазных электроприборов и один трехфазный аппарат. Рабочие и пусковые конденсаторы управляются отдельными кнопками;
- Метод соединения «Треугольник» позволяет переключать обмотки с целью получения трехфазного электропитания.
Стабильная и надежная работа самодельного генератора также зависит от правильно подобранных характеристик электромотора. Основные параметры указаны на заводской бирке на корпусе силового агрегата и в паспорте к устройству:
- мощность;
- номинальное число оборотов;
- категория защиты;
- доступные варианты подключения статорных обмоток;
- номинальный ток нагрузки;
- номинал пускового тока;
- КПД.
При использовании бывшего в употреблении агрегата желательно перепроверить его реальные характеристики с помощью амперметра и вольтметра, а также прозвонить обмотки и убедиться в отсутствии поврежденных проводников.
Принцип работы самодельного генератора
Под действием вращательного движения ротора на статоре образуется магнитное поле и возникает электродвижущая сила. Токовая подпитка витков происходит через подключенные к обмоточным концам конденсаторы, емкость которых должна быть немного больше допустимого номинального напряжения, чтобы генератор мог работать в режиме активной нагрузки и обеспечивать трехфазные вольтажи симметричного типа.
Для производства стабильного стандартного 50-герцового трехфазного (380B) электричества якорь электропривода должен постоянно вращаться с определенной скоростью. Появление магнитных силовых линий в данном случае возможно только тогда, когда эта скорость соответствует величине синхронной частоты и превышает асинхронную составляющую на коэффициент скольжения. Индуктивная нагрузка на генератор сопровождается резким возрастанием необходимой емкости, поэтому для поддержки стабильного напряжения при условиях повышения нагрузки нужно также повышать конденсаторную емкость.
Такое свойство можно считать одним из минусов асинхронного генератора. Частота его оборотов в обычном рабочем режиме должна быть больше асинхронной частоты на значение скольжения S=2-10%. Если данное условие не соблюдается, то генерируемое напряжение может иметь частоту, не совпадающую с 50-герцовой, и правильная токовая синусоида не получится, а ее искривление будет вызывать частотные скачки. Они плохо сказываются на работе подключенного бытового и промышленного оборудования, имеющего в своей конструкции электромотор.
Наибольшую опасность влечет за собой снижение частоты генератора, поскольку оно сопровождается понижением индуктивного обмоточного сопротивления электромоторов и трансформаторов. А это, в свою очередь, вызывает перегрев и сокращение срока эксплуатации электроприборов. Если генератор применяется исключительно для питания осветительных приборов или нагревателей, то частотные характеристики и токовая синусоида большого значения не имеют.
При принудительном запуске обесточенного электромотора от какого-либо первичного силового агрегата, в момент синхронизации частоты их оборотов по принципу обратимости электромашин на концах обмотки статора под воздействием остаточного электромагнитного поля возникает электродвижущая сила некоторой величины. Если теперь к этим контактам подсоединить конденсаторную батарею (С), то в статорных обмотках появится емкостный опережающий ток намагничивающего действия. Величина напряжения здесь зависит от параметров электромашины и емкости конденсаторов. Так короткозамкнутый асинхронный электромотор превращается в генератор асинхронного типа.
Типовая схема подключения асинхронного мотора в генераторном режиме выглядит следующим образом:
Методом подбора емкостей конденсаторов можно сравнять генераторную мощность и величину номинального напряжения с аналогичными рабочими параметрами обычного электромотора. Реактивная емкость вычисляется по формуле Q=0.314*C*U2*10 (-6 степени), где C – это конденсаторная емкость, а U=38B для возбуждения асинхронных трехфазных генераторов.
Среди самых энергоемких для примера можно привести такие подключаемые в быту и на производстве устройства, как:
- сварочные аппараты;
- электропилы;
- электропечи;
- зернодробилки;
- электрические утюги и прочее.
Рассмотренный способ подсоединения трехфазного электромотора для работы в генераторном режиме считается классическим, но далеко не единственным. Есть и другие прекрасно зарекомендовавшие себя методики, к примеру, когда конденсаторная батарея монтируется на одну или две обмотки генератора.
Рекомендации по эксплуатации и электробезопасности
При всей своей полезности трехфазный ток создает повышенную опасность для здоровья и даже жизни человека. Поэтому одним из приоритетных требований, предъявляемых к работе самодельной электроустановки, является именно безопасность ее эксплуатации.
С целью обеспечения электробезопасности должны соблюдаться следующие элементарные условия:
- использование единого щита управления, содержащего измерительные приборы, силовые трехкнопочные выключатели (одна кнопка для включения/выключения питания, две других – для активации пускового и рабочего конденсатора), автоматические выключатели для защиты от короткого замыкания, устройства аварийного отключения при пробое на корпус и прочее;
- наличие надежного заземляющего контура.
Кроме того, для защиты обслуживающего персонала и оборудования, а также для организации непрерывного техпроцесса широко используется методика автоматического ввода резерва, когда в случае исчезновения напряжения в основной электросети функция обеспечения питания возлагается на генератор, а при возобновлении подачи напряжения управление снова передается стационарной сети. Организовать автоматический ввод резерва также можно посредством перекидного трехфазного рубильника.
Во время интенсивной и продолжительной работы генератор начинает перегружаться по мощности, что вызывает чрезмерное нагревание обмоток и пробои в изоляции. Чтобы избежать поломки оборудования и самой автономной электростанции старайтесь соблюдать следующие рекомендации:
- правильно подбирайте конденсаторную емкость;
- не подключайте много оборудования, суммарная мощность которого превышает номинал генератора;
- однофазных потребителей подключайте только на треть всей мощности трехфазного агрегата (в случае наличия двух однофазных линий – на две третьих).
Также следите за частотными показателями. Для этого желательно вывести соответствующий измерительный прибор на общий электрощит. На холостом ходу вольтаж на выходе может быть выше стандартных величин 220 и 380 вольт на 4-6%.
Асинхронный двигатель в режиме генератора
В случае необходимости, в качестве генератора переменного тока может быть применен трехфазный асинхронный электродвигатель с короткозамкнутым ротором типа «беличья клетка».
Это решение удобно в силу широкой доступности асинхронных двигателей, а также благодаря отсутствию в подобных двигателях коллекторно-щеточного узла, что делает такой генератор надежным и долговечным. Если есть удобный способ приводить его ротор во вращение, то для генерации электроэнергии достаточно будет подключить к обмоткам статора три одинаковых конденсатора. Практика показывает, что такие генераторы могут работать годами без необходимости обслуживания.
Поскольку на роторе присутствует остаточная намагниченность, то при его вращении в статорных обмотках возникнет ЭДС индукции, а поскольку к обмоткам подключены конденсаторы, будет иметь место соответствующий емкостный ток, который станет намагничивать ротор. При дальнейшем вращении ротора произойдет самовозбуждение, благодаря чему в обмотках статора установится трехфазный синусоидальный ток.
В генераторном режиме частота вращения ротора должна соответствовать синхронной частоте двигателя, которая выше его рабочей (асинхронной) частоты. Например: у двигателя АИР112МВ8 обмотка статора имеет 4 пары магнитных полюсов, значит, его номинальная синхронная частота составляет 750 об/мин, но при работе под нагрузкой, ротор этого двигателя вращается с частотой 730 об/мин, поскольку это асинхронный двигатель. Значит, в генераторном режиме нужно вращать его ротор с частотой 750 об/мин. Соответственно, для двигателей с двумя парами магнитных полюсов номинальная синхронная частота составляет 1500 об/мин, а с одной парой полюсов – 3000 об/мин.
Конденсаторы подбираются в соответствии с мощностью применяемого асинхронного двигателя и характером нагрузки. Реактивную мощность, которую обеспечивают конденсаторы в таком режиме работы, в зависимости от их емкостей, можно вычислить по формуле:
Например, есть асинхронный двигатель, рассчитанный на номинальную мощность в 3кВт при работе от трехфазной сети с напряжением 380 Вольт и частотой 50 Гц. Значит, конденсаторы при полной нагрузке должны обеспечить всю эту мощность. Поскольку ток трехфазный, то речь здесь идет о емкости каждого конденсатора. Емкость можно найти по формуле:
Следовательно, для данного трехфазного асинхронного двигателя на 3кВт емкость каждого из трех конденсаторов при полной активной нагрузке составит:
Отлично подойдут для этой цели пусковые конденсаторы серий К78-17, К78-36 и им подобные на напряжение 400 Вольт и выше, лучше на 600 Вольт, или металлобумажные конденсаторы аналогичных номиналов.
Говоря о режимах работы генератора из асинхронного двигателя, важно отметить, что на холостом ходу подключенные конденсаторы будут создавать реактивный ток, который станет просто греть статорные обмотки, поэтому имеет смысл сделать конденсаторные блоки составными, и подключать емкости в соответствии с требованиями конкретной нагрузки. Ток холостого хода, при таком решении, будет значительно снижен, что позволит разгрузить систему в целом. Нагрузки же реактивного характера – наоборот потребуют подключения дополнительных конденсаторов, превышающих расчетный номинал из-за характерного для реактивных нагрузок коэффициента мощности.
Допускается соединение статорных обмоток как в звезду, для получения 380 Вольт, так и в треугольник, для получения 220 Вольт. Если нет необходимости в трехфазном токе, можно использовать лишь одну фазу, подключив конденсаторы только к одной из статорных обмоток.
Можно работать и с двумя обмотками. Между тем нужно помнить, что мощность, отдаваемая каждой из обмоток в нагрузку, не должна превышать трети общей мощности генератора. В зависимости от нужд, можно подключить трехфазный выпрямитель, или использовать непосредственно переменный ток. Для удобства контроля, полезно организовать индикаторный стенд с измерительными приборами – вольтметрами, амперметрами, и частотомером. Для переключения конденсаторов отлично подойдут автоматы (автоматические выключатели).
Особое внимание следует уделить технике безопасности, учесть критические значения токов, и соответствующим образом рассчитать сечения всех проводов. Надежная изоляция – также немаловажный фактор безопасности.
Как самому переделать генератор из асинхронного двигателя?
Данная задача требует выполнения ряда манипуляций, которые должны сопровождаться четким пониманием принципов и режимов функционирования такого оборудования.
Что собой представляет и как работает
Эл двигатель асинхронного типа – это машина, в которой происходит трансформация электрической энергии в механическую и тепловую. Такой переход становится возможным благодаря явлению электромагнитной индукции, которая возникает между обмотками статора и ротора. Особенностью асинхронных двигателей является тот факт, что частота вращения этих двух ключевых его элементов отличается.
Конструктивные особенности типичного эл двигателя можно видеть на иллюстрации. И статор, и ротор представляют собой соосные круглого сечения объекты, изготавливаются путем набора достаточного количества пластин из специальной стали. Пластины статора имеют пазы на внутренней части кольца и при совмещении образуют продольные канавки, в которые наматывается обмотка из медной проволоки. Для ротора, ее роль играют алюминиевые прутки, они также вставляются в пазы сердечника, но с обеих сторон замыкаются стопорными пластинами.
Во время подачи напряжения на обмотки статора, на них возникает и начинает вращаться электромагнитное поле. В связи с тем, что частота вращения ротора заведомо меньше, между обмотками наводится ЭДС и центральный вал начинает двигаться. Не синхронность частот связана не только с теоретическими основами процесса, но и с фактическим трением опорных подшипников вала, оно будет его несколько тормозить относительно поля статора.
Что такое электрический генератор?
Генератор представляет собой эл машину, преобразовывающую механическую и тепловую энергии в электрическую. С этой точки зрения он является устройством прямо противоположным по принципу действия и режиму функционирования к асинхронному двигателю. Более того, наиболее распространенным типом электрогенераторов являются индукционные.
Как мы помним из выше описанной теории, такое становится возможным только при разности оборотов магнитных полей статора и ротора. Из это следует один закономерный вывод (учитывая также принцип обратимости, упомянутый вначале статьи) – теоретически возможно сделать генератор из асинхронника, кроме того, это задача, решаемая самостоятельно за счет перемотки.
Работа двигателя в режиме генератора
Любой асинхронный электрогенератор используется в качестве некоего трансформатора, где механическая энергия от вращения вала двигателя, преобразуется в переменный ток. Такое становится возможным тогда, когда его скорость становится выше синхронной (порядка 1500 об/мин). Классическую схему переделки и подключения двигателя в режиме электрогенератора с выработкой трехфазного тока можно легко собрать своими руками:
Чтобы достичь такой стартовой частоты вращения, необходимо приложить довольно большой крутящий момент (например, за счет подключения двигателя внутреннего сгорания в бензогенераторе или крыльчатки в ветряке). Как только частота вращения достигает значения синхронной, начинает действовать конденсаторная батарея, создающая емкостный ток. За счет этого происходит самовозбуждение обмоток статора и выработка электрического тока (режим генерирования).
Необходимым условием устойчивой работы такого электрогенератора с промышленной частотой сети 50 Гц, является соответствие его частотных характеристик:
- Скорость его вращения должна превышать асинхронную (частоту работы самого двигателя) на процент скольжения (от 2 до 10%),
- Значение скорости вращения генератора должно соответствовать синхронной скорости.
Как самостоятельно собрать асинхронный генератор?
Обладая полученными знаниями, смекалкой и умением работать с информацией, можно своими руками собрать/переделать работоспособный генератор из двигателя. Для этого необходимо совершить точные действия следующей последовательности:
- Вычисляется реальная (асинхронная) частота вращения двигателя, который планируется применить в качестве электрогенератора. Для определения оборотов на подключенном к сети агрегате можно использовать тахограф,
- Определяется синхронная частота двигателя, которая одновременно будет асинхронной для генератора. Здесь учитывается величина скольжения (2-10%). Допустим, измерения показали скорость вращения на уровне 1450 об/мин. Требуемая частота работы электрогенератора будет составлять:
nГЕН = (1,02…1,1)nДВ= (1,02…1,1)·1450 = 1479…1595 об/мин,
- Подбор конденсатора необходимой емкости (используются стандартные сравнительные таблицы данных).
На этом можно и поставить точку, но если требуется напряжение однофазной сети 220В, то режим функционирования такого устройства потребует внедрения в приведенную ранее схему понижающего трансформатора.
Виды генераторов на базе двигателей
Покупка штатного готового эл генератора – удовольствие отнюдь не из дешевых и вряд ли по карману практическому большинству наших сограждан. Прекрасной альтернативой может послужить самодельный генератор, его можно собрать при достаточных познаниях в области электротехники и слесарного дела. Собранное устройство может успешно использоваться в качестве:
- Электрогенератора с самозапиткой. Пользователь может своими руками получить устройство для выработки электроэнергии с длительным периодом действия вследствие самостоятельной подпитки,
- Ветрогенератора. В качестве движителя, необходимого для пуска двигателя, используется ветряк, который вращается под воздействием ветра,
- Генератора на неодимовых магнитах,
- Трехфазного бензогенератора,
- Однофазного маломощного генератора на двигателях электроприборов и т. д.
Переделка своими руками стандартного мотора в действующее генерирующее устройство – занятие увлекательное и очевидно экономящее бюджет. Таким образом можно переделать обычный ветряк, соединив его с двигателем для автономной выработки энергии.
Источник: