Что такое характеристика холостого хода синхронного генератора
- Что такое характеристика холостого хода синхронного генератора
- § 116. Характеристики синхронных генераторов
- Режимы работы синхронных генераторов, рабочие характеристики генераторов
- Что такое характеристика холостого хода синхронного генератора
- Основные характеристики синхронных генераторов
- Эксплуатация электрических машин и аппаратуры — Характеристики синхронных генераторов
- Содержание материала
- Характеристики синхронного генератора
Что такое характеристика холостого хода синхронного генератора
§ 116. Характеристики синхронных генераторов
Работа машины в различных режимах и свойства самой машины определяются ее характеристиками.
Для снятия характеристик синхронного генератора собирают схему, представленную на рис. 278.
Рис. 278. Схема снятия характеристик синхронного генератора
Рассмотрим характеристику холостого хода синхронного генератора. Она представляет зависимость индуктированной в статоре э.д.с. Е от тока возбуждения Iв при разомкнутой внешней цепи машины:
Генератор приводится во вращение с синхронной скоростью, соответствующей номинальной частоте генератора. Увеличивают при помощи реостата ток возбуждения, отмечая показания амперметра в цепи возбуждения. По показаниям вольтметра, включенного на зажимы обмотки статора, определяют величину индуктированной э.д.с. Е.
Характеристика холостого хода синхронного генератора показана на рис. 279. Прямолинейная часть характеристики указывает на пропорциональность между индуктированной э.д.с. и током возбуждения. В дальнейшем магнитная система генератора насыщается, кривая изгибается, т. е. при значительном увеличении тока возбуждения индуктированная э.д.с. растет очень медленно. Обычно нормальная работа машины имеет место за изгибом характеристики холостого хода.
Рис. 279. Характеристика холостого хода синхронного генератора
Зависимость напряжения на зажимах генератора U от тока нагрузки I при постоянных (пост) значениях тока возбуждения Iв, коэффициента мощности cos φ и скорости вращения n дается внешней характеристикой:
при Iв = пост, cos φ = пост, n = nн = пост.
По показаниям амперметра и вольтметра, включенных в цепь обмотки статора, строят характеристику. На рис. 280 даны внешние характеристики генератора для различных видов нагрузки.
Рис. 280. Внешние характеристики синхронного генератора
Напомним, что положительным углом φ принято считать угол φ в цепи, когда ток отстает по фазе от напряжения, и отрицательным, когда ток опережает по фазе напряжение.
Изменение напряжения U с нагрузкой происходит вследствие реакции якоря и падения напряжения в обмотке якоря (статора).
При индуктивной нагрузке реактивный ток размагничивает машину и при увеличении тока нагрузки напряжение уменьшается.
При емкостной нагрузке напряжение генератора с увеличением тока нагрузки повышается вследствие действия продольно-намагничивающей реакции якоря.
Регулировочная характеристика представляет зависимость тока возбуждения Iв от тока нагрузки I при постоянных значениях напряжения на зажимах генератора U, скорости вращения n и коэффициента мощности cos φ:
Регулировочные характеристики, представленные на рис. 281, показывают, как с изменением нагрузки необходимо менять ток возбуждения, чтобы компенсировать падение напряжения в обмотке якоря и действие реакции якоря.
Рис. 281. Регулировочные характеристики синхронного генератора
В процессе эксплуатации нагрузка генератора изменяется в течение суток как по величине, так и по своему характеру. Так, например, если генератор установлен на местной заводской электростанции, то в обеденные перерывы нагрузка значительно снижается. В вечернее время включаются лампы электрического освещения, а некоторая часть электродвигателей обычно отключается. Следовательно, активная нагрузка увеличивается, а индуктивная уменьшается и cos φ изменяется.
При увеличении активной нагрузки необходимо соответственно увеличить подачу пара, воды или нефти в первичный двигатель, а с уменьшением нагрузки, наоборот, уменьшить. Если увеличилась индуктивная нагрузка синхронного генератора (cos φ уменьшился), то необходимо увеличить ток возбуждения.
Режимы работы синхронных генераторов, рабочие характеристики генераторов
Основными величинами, характеризующими синхронный генератор, являются: напряжение на зажимах U , нагрузка I , полная мощность P (кВа), число оборотов ротора в минуту n , коэффициент мощности cos φ .
Важнейшие рабочие характеристики синхронного генератора следующие:
характеристика холостого хода,
Характеристика холостого хода синхронного генератора
Электродвижущая сила генератора пропорциональна величине магнитного потока Ф, создаваемого током возбуждения i в, и числу оборотов n ротора генератора в минуту:
где с — коэффициент пропорциональности.
Хотя величина электродвижущей силы синхронного генератора зависит от числа оборотов n ротора, регулировать ее путем изменения скорости вращения ротора невозможно, так как с числом оборотов ротора генератора связана частота электродвижущей силы, которая должна быть сохранена постоянной.
Следовательно, остается единственный способ регулировки величины электродвижущей силы синхронного генератора — это изменение основного магнитного потока Ф. Последнее обычно достигается путем регулирования тока возбуждения iв с помощью реостата, введенного в цепь возбуждения генератора. В том случае когда обмотка возбуждения питается током от генератора постоянного тока, сидящего на одном валу с данным синхронным генератором, ток возбуждения синхронного генератора регулируется изменением напряжения на зажимах генератора постоянного тока.
Зависимость электродвижущей силы Е синхронного генератора от тока возбуждения iв при постоянстве номинальной скорости вращения ротора ( n = const) и нагрузке, равной нулю ( 1 = 0), называется характеристикой холостого хода генератора.
На рисунке 1 приведена характеристика холостого хода генератора. Здесь восходящая ветвь 1 кривой снята при возрастании тока i в от нуля до i в m , а нисходящая ветвь 2 кривой — при изменении iв от iвm до iв = 0.
Рис. 1. Характеристика холостого хода синхронного генератора
Несовпадение восходящей 1 и нисходящей 2 ветвей объясняется остаточным магнетизмом. Чем больше площадь, ограниченная этими ветвями, тем больше потерь энергии в стали синхронного генератора на перемагничивание.
Крутизна подъема кривой холостого хода на ее начальном прямолинейном участке характеризует магнитную цепь синхронного генератора. Чем меньше расход ампер-витков в воздушных зазорах генератора, тем при прочих одинаковых условиях будет круче характеристика холостого хода генератора.
Внешняя характеристика генератора
Напряжение на зажимах нагруженного синхронного генератора зависит от электродвижущей силы Е генератора, от падения напряжения в активном сопротивлении его статорной обмотки, падения напряжения, обусловленного электродвижущей силой самоиндукции рассеяния Es, и падения напряжения, обусловленного реакцией якоря.
Электродвижущая сила рассеяния Es, как известно, зависит от магнитного потока рассеяния Ф s , который не проникает в магнитные полюса ротора генератора и, следовательно, не изменяет степени намагничивания генератора. Электродвижущая сила самоиндукции рассеяния Es генератора относительно мала, а поэтому практически ею можно пренебречь. В соответствии с этим ту часть электродвижущей силы генератора, которая компенсирует электродвижущую силу самоиндукции рассеяния Es, можно считать практически равной нулю.
Реакция якоря оказывает более заметное влияние на режим работы синхронного генератора и, в частности, на величину напряжения на его зажимах. Степень этого влияния зависит не только от величины нагрузки генератора, но и от характера нагрузки.
Рассмотрим вначале влияние реакции якоря синхронного генератора для случая, когда нагрузка генератора носит чисто активный характер. Для этой цели возьмем часть схемы работающего синхронного генератора, изображенную на рис. 2 ,а. Здесь показаны часть статора с одним активным проводником якорной обмотки и часть ротора с несколькими его магнитными полюсами.
Рис. 2. Влияние реакции якоря для нагрузок: а — активного, б — индуктивного, в — емкостного характера
В рассматриваемый момент времени северный полюс одного из электромагнитов, вращающихся вместе с ротором против часовой стрелки, как раз проходит под активным проводником статорной обмотки.
Электродвижущая сила, индуктированная в этом проводнике, направлена к нам из-за плоскости рисунка. А так как нагрузка генератора носит чисто активный характер, то ток I в якорной обмотке совпадает по фазе с электродвижущей силой. Следовательно, в активном проводнике статорной обмотки ток течет к нам из-за плоскости рисунка.
Магнитные линии поля, создаваемого электромагнитами, показаны здесь сплошными линиями, а магнитные линии поля, создаваемого током провода якорной обмотки, — пунктирной линией.
Внизу на рис. 2 ,а показана векторная диаграмма магнитной индукции результирующего магнитного поля, находящегося над северным полюсом электромагнита. Здесь мы видим, что магнитная индукция В основного магнитного поля, создаваемого электромагнитом, имеет радиальное направление, а магнитная индукция В я магнитного поля тока якорной обмотки направлена вправо и перпендикулярно вектору В .
Результирующая магнитная индукция Врез направлена вверх и вправо. Это значит, что в результате сложения магнитных полей произошло некоторое искажение основного магнитного поля. Слева от северного полюса оно несколько ослабилось, а справа — несколько усилилось.
Нетрудно видеть, что радиальная составляющая вектора результирующей магнитной индукции, от которой по сути дела зависит величина индуктированной электродвижущей силы генератора, не изменилась. Следовательно, реакция якоря при чисто активной нагрузке генератора не влияет на величину электродвижущей силы генератора. Это значит, что и падение напряжения в генераторе при чисто активной нагрузке обусловлено только падением напряжения в активном сопротивлении генератора, если пренебречь электродвижущей силой самоиндукции рассеяния.
Теперь допустим, что нагрузка синхронного генератора носит чисто индуктивный характер. В этом случае ток I отстает по фазе от электродвижущей силы Е на угол π/2 . Это значит, что максимум тока возникает в проводе несколько позднее, чем максимум электродвижущей силы. Следовательно, когда в проводе якорной обмотки ток достигнет максимального значения, северный полюс N будет уже не под этим проводом, а сместится несколько дальше в направлении вращения ротора, как это показано на рис. 2 ,б.
В этом случае магнитные линии (пунктирные линии) магнитного потока якорной обмотки замыкаются через два соседних разноименных полюса N и S и направлены навстречу магнитным линиям основного магнитного поля генератора, создаваемого магнитными полюсами. Это приводит к тому, что основное магнитное пате не только искажается, но и делается несколько слабее.
На рис. 2,6 приведена векторная диаграмма магнитных индукций: основного магнитного поля В, магнитного поля, обусловленного реакцией якоря В я, и результирующего магнитного поля В рез.
Здесь мы видим, что радиальная составляющая магнитной индукции результирующего магнитного поля стала меньше магнитной индукции В основного магнитного поля на величину Δ В. Следовательно, стала меньше и индуктированная электродвижущая сила, так как она обусловлена радиальной составляющей магнитной индукции. А это значит, что напряжение на зажимах генератора при всех прочих равных условиях будет меньше, чем напряжение при чисто активной нагрузке генератора.
Если генератор имеет нагрузку чисто емкостного характера, то ток в нем опережает по фазе электродвижущую силу на угол π/2 . Ток в проводниках якорной обмотки генератора теперь достигает максимума раньше, чем электродвижущая сила Е. Следовательно, когда в проводе якорной обмотки (рис. 2,в) ток достигнет максимального значения, северный полюс N еще не подойдет под этот провод.
В этом случае магнитные линии (пунктирные линии) магнитного потока якорной обмотки замыкаются через два соседних разноименных полюса N и S и направлены попутно с магнитными линиями основного магнитного поля генератора. Это приводит к тому, что основное магнитное поле генератора не только искажается, но и несколько усиливается.
На рис. 2,в приведена векторная диаграмма магнитной индукции: основного магнитного поля В , магнитного поля, обусловленного реакцией якоря Вя, и результирующего магнитного поля B рез. Мы видим, что радиальная составляющая магнитной индукции результирующего магнитного поля стала больше магнитной индукции В основного магнитного поля на величину Δ В. Следовательно, увеличилась и индуктированная электродвижущая сила генератора.А это значит, что напряжение на зажимах генератора при всех прочих одинаковых условиях станет больше, чем напряжение при чисто индуктивной нагрузке генератора.
Выяснив влияние реакции якоря на электродвижущую силу синхронного генератора при различных по своему характеру нагрузках, перейдем к выяснению внешней характеристики генератора. Внешней характеристикой синхронного генератора называется зависимость напряжения U на его зажимах от нагрузки I при постоянной скорости вращения ротора (n = const), постоянстве тока возбуждения (i в = const) и постоянстве коэффициента мощности (cos φ = const).
На рис. 3 приведены внешние характеристики синхронного генератора для различных по своему характеру нагрузок. Кривая 1 выражает внешнюю характеристику при активной нагрузке (cos φ = 1,0). В этом случае напряжение на зажимах генератора падает при изменении нагрузки от холостого хода до номинальной в пределах 10 — 20% напряжения при холостом ходе генератора.
Кривая 2 выражает внешнюю характеристику при активно-индуктивной нагрузке (cos φ = 0 ,8). В этом случае напряжение на зажимах генератора падает быстрее из-за размагничивающего действия реакции якоря. При изменении нагрузки генератора от холостого хода до номинальной напряжение уменьшается в пределах 20 — 30% напряжения при холостом ходе.
Кривая 3 выражает внешнюю характеристику синхронного генератора при активно-емкостной нагрузке (cos φ = 0,8). В этом случае напряжение на зажимах генератора несколько растет из-за намагничивающего действия реакции якоря.
Рис. 3. Внешние характеристики генератора переменного тока для различных нагрузок: 1 — активной, 2 — индуктивной, 3 емкостной
Регулировочная характеристика синхронного генератора
Регулировочная характеристика синхронного генератора выражает зависимость тока возбуждения i в генератора от нагрузки I при постоянстве действующего значения напряжения на зажимах генератора (U = const), постоянстве числа оборотов ротора генератора в минуту ( n = const) и постоянстве коэффициента мощности (cos φ = const).
На рис. 4 приведены три регулировочные характеристики синхронного генератора. Кривая 1 относится к случаю активной нагрузки (cos φ = 1 ) .
Рис. 4. Регулировочные характеристики генератора переменного тока для различных нагрузок: 1 — активной, 2 — индуктивной, 3 — емкостной
Здесь мы видим, что с ростом нагрузки I генератора ток возбуждения растет. Это понятно, так как с ростом нагрузки I увеличивается падение напряжения в активном сопротивлении якорной обмотки генератора и требуется увеличить электродвижущую силу Е генератора путем увеличения тока возбуждения i в , чтобы сохранить постоянство напряжения U.
Кривая 2 относится к случаю активно-индуктивной нагрузки при cos φ = 0 ,8 . Эта кривая поднимается круче, чем кривая 1, вследствие размагничивающего действия реакции якоря, снижающего величину электродвижущей силы Е, и, следовательно, напряжение U на зажимах генератора.
Кривая 3 относится к случаю активно-емкостной нагрузки при cos φ = 0,8. Эта кривая показывает, что с ростом нагрузки генератора требуется меньший ток возбуждения iв генератора для поддержания постоянства напряжения на его зажимах. Это понятно, так как в этом случае реакция якоря усиливает основной магнитный поток и, следовательно, способствует увеличению электродвижущей силы генератора и напряжения на его зажимах.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Что такое характеристика холостого хода синхронного генератора
ХОЛОСТОЙ ХОД СИНХРОННЫХ ГЕНЕРАТОРОВ
Под холостым ходом автономного синхронного генератора понимается такой режим его работы, при котором ротор вращается приводным двигателем, а обмотка якоря разомкнута. В этом случае магнитное поле машины создается только током возбуждения. Это поле можно разложить на две составляющие: основное поле, магнитные линии которого проходят через воздушный зазор и сцепляются с обмоткой якоря, и поле рассеяния полюсов, магнитные линии которого сцепляются только с обмоткой возбуждения.
Магнитный поток основного поля при вращении полюсов индуктирует в обмотке якоря ЭДС. К этой ЭДС и к напряжению на выводах генератора предъявляется требование, чтобы их форма приближалась к синусоидальной. Это требование обусловлено тем, что при синусоидальных ЭДС и напряжении ток в якоре при линейном характере подключенной цепи также синусоидален. Вследствие этого суммарные потери в генераторе и у потребителей минимальны, так как отсутствуют добавочные потери от высших гармонических. Критерием для оценки кривой ЭДС служит коэффициент искажения синусоидальности этой кривой, под которым понимается выраженное в процентах отношение корня квадратного из суммы квадратов амплитудных (или действующих) значений высших гармонических составляющих данной кривой к амплитудному (или действующему) значению основной гармонической этой кривой:
где ν — порядок гармонической составляющей.
Коэффициент искажения кривой линейных ЭДС в трехфазных генераторах переменного тока 50 Гц не должен превышать 5 % для генераторов мощностью выше 100 кВ∙А и 10 % для генераторов мощностью до 100 кВ∙А.
Для получения кривой ЭДС, близкой к синусоиде, прежде всего необходимо, чтобы кривая магнитного поля возбуждения машины была по возможности синусоидальной. В явнополюсной машине для этого зазор между полюсом и статором делают неравномерным (рис. 20, а): обычно у краев полюса зазор берут в 1,5-2 раза больше, чем у середины. Распределение магнитной индукции в зазоре между полюсом и якорем при такой конфигурации его наконечника показано на рис. 20, б. Там же штриховой линией для сравнения показана кривая магнитной индукции при равномерном зазоре. В неявнополюсной машине улучшение формы магнитного поля возбуждения достигается выбором соотношения между частями полюсного деления, имеющими и не имеющими обмотку (рис. 21). Пренебрегая влиянием пазов, создающих некоторую ступенчатость в кривой МДС и магнитной индукции, можно принять, что МДС обмотки возбуждения, а также кривая магнитного поля распределены по окружности цилиндрического ротора с неявными полюсами по трапецеидальному закону. Амплитудные значения основных гармоник МДС и индукции поля соответственно равны
(3)
где в,max и δ,max — максимальные значения МДС обмотки возбуждения на один полюс и индукции в зазоре; в, в число витков обмотки возбуждения на полюс и ток возбуждения; α — длина дуги, соответствующая половине той части полюсного деления, на которой располагается обмотка возбуждения.
В целях улучшения кривой магнитного поля возбуждения часть полюса, на которой не укладывается обмотка, выбирают равной τ/3 (α=π/3). В этом случае в кривой магнитной индукции будут отсутствовать все гармоники с номером, кратным 3, а остальные высшие гармоники будут ослаблены.
Кроме того, для улучшения формы кривой индуктированной ЭДС применяют распределение обмотки якоря по пазам и укорочение ее шага. В мощных многополюсных машинах улучшению кривой ЭДС способствует применение обмоток с дробным
Важной характеристикой синхронной машины является характеристика холостого хода. Она представляет собой зависимость ЭДС, индуктируемой в обмотке якоря, от тока возбуждения при неизменной частоте вращения ротора. Эта характеристика позволяет
оценить насыщение магнитной цепи машины и с ее помощью построить векторные диаграммы и другие характеристики машины.
На рис. 22 показана схема для снятия характеристики холостого хода опытным путем. С помощью резистора в ток возбуждения изменяют от максимального значения до нуля, записывая при этом показания амперметра и вольтметра.
При токе возбуждения в =0 ЭДС от остаточного магнетизма ост = (2÷3) %U1ном. При расчетах обычно используют характеристику холостого хода, которую получают, смещая опытную характеристику вправо на расстояние (сплошная линия).
На основании сравнения характеристик холостого хода современных синхронных генераторов было установлено, что эти характеристики мало отличаются друг от друга, если построение их производить в относительных единицах. При переводе ЭДС в относительные единицы ее текущее значение в вольтах делят на номинальное напряжение якоря в вольтах (*=/ U1ном). Относительное значение тока возбуждения находят как отношение текущего значения тока возбуждения в амперах к току, принятому за базовый, в амперах (в* = в / в,б). За базовый ток возбуждения в,б принимается ток, соответствующий по характеристике холостого хода = U1ном. Полученные таким образом характеристики называются нормальными характеристиками холостого хода. Эти характерстики для явнополюсных и неявнополюсных генераторов даны в таблице.
в*
Основные характеристики синхронных генераторов
Основными характеристиками синхронных генераторов являются:
— характеристика холостого хода;
Характеристика холостого хода показывает зависимость ЭДС генератора от величины тока возбуждения при постоянной частоте и отключенной нагрузке, т.е. при холостом ходе Е = f(Iв) при Iн = 0, n = const.
В нижней части характеристика холостого хода прямолинейна, поскольку при малых индукциях большая часть МДС (W Iв) затрачивается на преодоление магнитным потоком воздушного зазора между статором и ротором, а для воздуха зависимость Ф = f(Iв) линейная. Стальные же участки магнитопровода при малых индукциях не представляют существенного сопротивления магнитному потоку.
При дальнейшем увеличении МДС и потока сказывается магнитное насыщение стали, вследствие чего магнитное сопротивление стальных участков начинает быстро возрастать и для их преодоления потоком требуется значительно большая часть МДС. Поэтому характеристика начинает наклоняться в сторону оси абсцисс и становится криволинейной.
При полном насыщении стали магнитопровода, которое наступает при очень больших МДС, характеристика холостого хода снова выпрямляется, но ее наклон к оси абсцисс значительно меньше, чем на начальном линейном участке.
Характеристика холостого хода определяет свойства магнитной цепи синхронного генератора. Она аналогична кривой намагничивания, которую рассматривали в теме магнитные цепи. т.е. она имеет восходящую и нисходящую ветви обусловленные наличием гистерезиса в сердечнике машины.
Рабочую точку А, соответствующую номинальному режиму работы генератора, выбирают обычно на перегибе («колене») характеристики холостого хода.
Внешняя характеристика показывает, как изменяется напряжение на генераторе при изменении тока нагрузки и постоянной частоте вращения, а также при неизменных коэффициенте мощности и токе возбуждения
U = f(Iн) при Iв, n, cos = const.
С увеличением нагрузки, подключенной к генератору, возрастает ток якоря Iя. Это приводит к увеличению падения напряжения в обмотке якоря. Тогда из основного уравнения генератора U = E – Iя · Rя, следует, что напряжение на выходе генератора будет уменьшаться вследствие:
— изменения напряжения на обмотке якоря Iя · Rя ;
— изменения ЭДС Е из-за реакции якоря, зависящей от характера нагрузки.
При подключении различной по характеру нагрузки (R, L, С) внешняя характеристика различна. Это обуславливается влияние тока якоря на магнитное поле генератора. Используя закон электромагнитной индукции и известные фазовые соотношения (ток на индуктивности отстает от напряжения на угол 90 0 , а на емкости опережает напряжение на такой же угол) можно увидеть, что при подключении емкости ток нагрузки (якоря) подмагничивает генератор (благодаря продольно – намагничивающей реакции якоря).
При индуктивной нагрузке, ток якоря наиболее сильно размагничивает генератор (сильно сказывается влияние продольно – размагничивающей реакции якоря).
Регулировочная характеристикапоказывает, как следует изменять ток возбуждения синхронного генератора при изменении тока нагрузки, чтобы поддерживать неизменным напряжение Iв = f(I) при U, n, cos = const.
Различный характер кривых обусловлен опять фазовыми соотношениями в цепях с разной нагрузкой, как и во внешней характеристике.
Для поддержания напряжения неизменным при активной и тем более активно-индуктивной нагрузке, когда сильно сказывается продольно-размагничивающая реакция якоря, ток возбуждения нужно увеличивать, а при активно-емкостной нагрузке – уменьшать.
| | следующая лекция ==> | |
Особенности конструкции бесконтактных синхронных генераторов | | | И КПД синхронного генератора |
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Эксплуатация электрических машин и аппаратуры — Характеристики синхронных генераторов
Содержание материала
Характеристикой машины называют зависимость одной величины от другой при определенных условиях. Характеристики часто строят в относительных единицах. В системе относительных единиц электрические величины выражают не в амперах, вольтах и т. д., а в частях, долях или процентах от величин, условно принятых за единицу или 100 %.
Так, за единицу напряжения принимается номинальное фазное напряжение синхронного генератора. Если генератор с линейным номинальным напряжением 400 в, то его фазное напряжение 230 в принимают за единицу напряжения. Напряжение 115 в будет соответствовать 0,5 относительной единицы.
За единицу тока якоря в системе относительных единиц принимается номинальный фазный ток генератора. За единицу мощности принимают номинальную мощность синхронного генератора. За единицу тока возбуждения принимают такой ток в роторе когда на зажимах генератора при холостом ходе и номинальной скорости вращения получается номинальное напряжение. За единицу скорости принимают синхронную скорость.
Характеристика холостого хода — зависимость напряжения при холостом ходе генератора от тока возбуждения при постоянной скорости вращения ротора (рис. 49).
Если характеристики холостого хода современных синхронных генераторов построить в относительных единицах, то они будут совпадать, что дает возможность ввести нормальную характеристику холостого хода:прямолинейную, область перегиба и пологую, почти прямолинейную часть.
Первая прямолинейная часть соответствует очень слабому насыщению магнитной системы машины, когда магнитный поток встречает постоянное сопротивление, обусловленное практически только воздушным зазором. На этой части характеристики с увеличением тока возбуждения пропорционально увеличивается и напряжение холостого хода генератора.
Рис. 49. Характеристика холостого хода синхронного генератора.
В области перегиба характеристики напряжение растет медленнее увеличения тока возбуждения. В этом случае к сопротивлению магнитного потока, обусловленному воздушным зазором, прибавляется все увеличивающееся с ростом тока сопротивление магнитной цепи на участках со сталью. В области перегиба насыщение магнитной системы все более и более увеличивается.
Третья, почти прямолинейная часть характеристики соответствует полному насыщению магнитной системы, на которой участки магнитной цепи оказывают магнитному потоку примерно такое же сопротивление, как и участки с воздушным зазором. На этой части характеристики напряжение очень медленно увеличивается с возрастанием тока возбуждения.
В синхронных генераторах точка номинальной э. д. с. — в области перегиба характеристики холостого хода. Это позволяет избежать резкого изменения напряжения при незначительных колебаниях тока возбуждения, дает возможность регулировать напряжение.
Рис. 50. Внешние характеристики синхронного генератора: 1— при активной нагрузке; 2 — при активно-индуктивной; 3 — при активно-емкостной.
Внешняя характеристика представляет зависимость напряжения генератора U от тока нагрузки при постоянном токе возбуждения, скорости вращения п (или частоте) и коэффициенте мощности cos φ.
На рисунке 50 показаны внешние характеристики синхронного генератора при активной (/), активно-индуктивной (2) и активно-емкостной (5) нагрузке, снятые на понижение напряжения, то есть при увеличении нагрузок от холостого хода до номинальной или несколько большей. При росте активной нагрузки напряжение генератора уменьшается.
При увеличении активно-индуктивной нагрузки напряжение генератора уменьшается более интенсивно, чем при активной. Чем ниже коэффициент мощности потребителя, тем резче снижается напряжение генератора.
Внешние характеристики на понижение напряжения позволяют подсчитать процентное снижение напряжения генератора. При активной и активно-индуктивной нагрузках понижение напряжения положительное. При активно-емкостной нагрузке понижение напряжения может оказаться отрицательным, что указывает не на уменьшение, а на увеличение напряжения генератора.
Рис. 51. Регулировочные характеристики синхронного генератора:
1 — при активной; 2 при активно-индуктивной; 3 — при активно-емкостной нагрузке.
Внешние характеристики можно снять и на повышение напряжения. Для этого генератор загружают при номинальном напряжении на номинальный ток при заданном коэффициенте мощности, а затем уменьшают нагрузку до нуля. Напряжение генератора будет увеличиваться при активной и активно-индуктивной нагрузке, и оно может уменьшиться при активно-емкостной нагрузке. Эти внешние характеристики дают возможность подсчитать повышение напряжения, которое не должно превышать 50%.
Регулировочная характеристика — зависимость тока возбуждения от тока нагрузки генератора при постоянном напряжении U, скорости вращения п и коэффициенте мощности. На рисунке 51 показаны регулировочные характеристики синхронного генератора при активной (1), активно-индуктивной (2) и активно-емкостной (3) нагрузках.
Регулировочные характеристики показывают, какой ток возбуждения должен быть, чтобы при заданной нагрузке напряжение генератора оставалось постоянным, равным номинальному. При активной и активно-индуктивной нагрузке с ростом тока якоря ток возбуждения должен возрастать, чтобы поддерживать заданную величину напряжения. При одном и том же токе нагрузки ток возбуждения должен быть большим при активно-индуктивной нагрузке, чем при активной.
При активно-емкостной нагрузке с увеличением тока якоря ток возбуждения при постоянном напряжении может уменьшаться или увеличиваться.
В ряде случаев при часто изменяющейся нагрузке ручное регулирование напряжения генератора оказывается неудовлетворительным. Поэтому синхронные генераторы снабжают специальными устройствами для автоматического регулирования напряжения.
Характеристики синхронного генератора
Свойства синхронного генератора определяются характеристиками холостого хода, короткого замыкания, внешними и регулировочными.
Характеристика холостого хода синхронного генератора.Представляет собой график зависимости напряжения на выходе генератора в режиме х.х. U1 = Е от тока возбуждения Iв.0 при n1 = const. Схема включения синхронного генератора для снятия характеристики х.х. приведена на рис. 20.9, а. Если характеристики х.х. различных синхронных генераторов изобразить в относительных единицах Е* = f (Iв*), то эти характеристики мало отличаются друг от друга и будут очень схожи с нормальной характеристикой х.х. (риc. 20.9, б), которую используют при расчетах синхронных машин:
E* | 0,58 | 1,0 | 1,21 | 1,33 | 1,40 | 1,46 | 1,51 |
Iв* | 0,5 | 1,0 | 1,5 | 2,0 | 2,5 | 3,0 | 3,5 |
Здесь E* = Е / U1ном — относительная ЭДС фазы обмотки статора;
Iв* = Iв0 /Iв0ном — относительный ток возбуждения; Iв0ном — ток возбуждения в режиме х.х., соответствующий ЭДС х.х. Е = U1ном
Характеристика короткого замыкания.Характеристику трехфазного к.з. получают следующим образом: выводы обмотки статора замыкают накоротко (рис. 20.10, а) и при вращении ротора с частотой вращения n1 постепенно увеличивают ток возбуждения до значения, при котором ток к.з. превышает номинальный рабочий ток статорной обмотки не более чем на 25% (I1к = l,25 I1ном). Так как в этом случае ЭДС обмотки статора имеет значение, в несколько раз меньшее, чем в рабочем режиме генератора, и, следовательно, основной магнитный поток весьма мал, то магнитная цепь машины оказывается ненасыщенной. По этой причине характеристика к.з. представляет собой прямую линию (рис. 20.10, б). Активное сопротивление обмотки статора невелико по сравнению с ее индуктивным сопротивлением, поэтому, принимая r1 ≈ 0, можно считать, что при опыте к.з. нагрузка синхронного генератора (его собственные обмотки) является чисто индуктивной. Из этого следует, что при опыте к.з. реакция якоря синхронного генератора имеет продольно-размагничивающий характер (см. § 20.3).
Векторная диаграмма, построенная для генератора при опыте трехфазного к.з., представлена на рис. 20.10, в. Из диаграммы видно, что ЭДС индуцируемая в обмотке статора, полностью уравновешивается ЭДС продольной реакции якоря и ЭДС рассеяния .
Рис. 20.9. Опыт холостого хода синхронного генератора
При этом МДС обмотки возбуждения имеет как бы две составляющие: одна компенсирует падение напряжения , а другая компенсирует размагничивающее влияние реакции якоря .
Характеристики к.з. и х.х. дают возможность определить значения токов возбуждения, соответствующие указанным составляющим МДС возбуждения. С этой целью характеристики х.х. и к.з. строят в одних осях (рис. 20.11), при этом на оси ординат отмечают относительные значения напряжения х.х. Е* = E/ U1ном и тока к.з. Iк* = I1к/ I1ном. На оси ординат откладывают отрезок ОВ, выражающий в масштабе напряжения относительное значение ЭДС рассеяния . Затем точку В сносят на
Рис. 20.10. Опыт короткого замыкания синхронного генератора
Рис. 20.11. Определение составляющих тока к.з.
характеристику х.х. (точка В’) и опускают перпендикуляр B’D на ось абсцис. Полученная точка D разделила ток возбуждения Iв0ном на две части: Iвх — ток возбуждения, необходимый для компенсации падения напряжения , и — ток возбуждения, компенсирующий продольно-размагничивающую реакцию якоря.
Один из важных параметров синхронной машины — отношение короткого замыкания (ОКЗ), которое представляет собой отношение тока возбуждения Iв0ном, соответствующего номинальному напряжению при х.х., к току возбуждения Iв.к.ном соответствующему номинальному току статора при опыте к.з. (рис. 20.10, б):
Для турбогенераторов ОКЗ = 0,4 ÷ 0,7; для гидрогенераторов ОКЗ = 1,0 ÷ 1,4.
ОКЗ имеет большое практическое значение при оценке свойств синхронной машины: машины с малым ОКЗ менее устойчивы при параллельной работе (см. гл. 21), имеют значительные колебания напряжения при изменениях нагрузки, но такие машины имеют меньшие габариты и, следовательно, дешевле, чем машины с большим ОКЗ.
Внешняя характеристика.Представляет собой зависимость напряжения на выводах обмотки статора от тока нагрузки: U1 = f (I1) при Iв = const; соs φ1, = const; n1 = nном = const. На рис. 10.12, а представлены внешние характеристики, соответствующие различным по характеру нагрузкам синхронного генератора.
При активной нагрузке (соs φ1 = 1) уменьшение тока нагрузки I1 сопровождается ростом напряжения U1, что объясняется уменьшением падения напряжения в обмотке статора и ослаблением размагничивающего действия реакции якоря по поперечной оси. При индуктивной нагрузке (cos φ1
Дата добавления: 2015-11-18 ; просмотров: 3014 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник: