Что такое генератор колебаний высокой частоты

Что такое генератор колебаний высокой частоты

Генераторы высокой частоты

Высокочастотные генераторы предназначены для получе­ния электрических колебаний в диапазоне частот от десятков кГц до десятков и даже сотен МГц. Такие генераторы, как правило, вы­полняют с использованием LC-колебательных контуров или квар­цевых резонаторов, являющихся частотозадающими элементами. Принципиально схемы от этого существенно не изменяются, по­этому ниже будут рассмотрены LC-генераторы высокой частоты. Отметим, что в случае необходимости колебательные контуры в некоторых схемах генераторов (см., например, рис. 12.4, 12.5) мо­гут быть без проблем заменены кварцевыми резонаторами.

(рис. 12.1, 12.2) выполнены по традиционной и хорошо зарекомендовавшей себя на практи­ке схеме «индуктивной трехточки». Они различаются наличием эмиттерной RC-цепочки, задающей режим работы транзистора (рис. 12.2) по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности (рис. 12.1, 12.2) делают отвод (обычно от ее 1/3…1/5 части, считая от заземленного вы­вода). Нестабильность работы генераторов высокой частоты на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации «плавает». Для ослабления влияния транзистора на рабочую частоту генерации следует максимально ослабить связь коле­бательного контура с транзистором, до минимума уменьшив пе­реходные емкости. Кроме того, на частоту генерации заметно нпияет и изменение сопротивления нагрузки. Поэтому крайне необходимо между генератором и сопротивлением нагрузки иключить эмиттерный (истоковый) повторитель.

Для питания генераторов следует использовать стабильные источники питания с малыми пульсациями напряжения.

Генераторы, выполненные на полевых транзисторах (рис. 12.3), обладают лучшими характеристиками.

, собранные по схеме «ем­костной трехточки» на биполярном и полевом транзисторах, показаны на рис. 12.4 и 12.5. Принципиально по своим харак­теристикам схемы «индуктивной» и «емкостной» трехточек не отличаются, однако в схеме «емкостной трехточки» не нужно делать лишний вывод у катушки индуктивности.

Во многих схемах генераторов (рис. 12.1 — 12.5 и другие схемы) выходной сигнал может сниматься непосредственно с ко­лебательного контура через конденсатор небольшой емкости или через согласующую катушку индуктивной связи, а также с неза- земленных по переменному току электродов активного элемента (транзистора). При этом следует учитывать, что дополнительная нагрузка колебательного контура меняет его характеристики и ра­бочую частоту. Иногда это свойство используют «во благо» — для целей измерения различных физико-химических величин, контро­ля технологических параметров.

На рис. 12.6 показана схема несколько видоизмененного ва­рианта ВЧ генератора — «емкостной трехточки». Глубину положи­тельной обратной связи и оптимальные условия для возбуждения генератора подбирают с помощью емкостных элементов схемы.

Схема генератора, показанная на рис. 12.7, работоспособ­на в широком диапазоне значений индуктивности катушки коле­бательного контура (от 200 мкГч до 2 Гн) [Р 7/90-68]. Такой генератор можно использовать в качестве широкодиапазонного высокочастотного генератора сигналов или в качестве измери­тельного преобразователя электрических и неэлектрических ве­личин в частоту, а также в схеме измерения индуктивностей.

Генераторы на активных элементах с N-образной ВАХ (тун­нельные диоды, лямбда-диоды и их аналоги) содержат обычно

источник тока, активный элемент и частотозадающий элемент (LC-контур) с параллельным или последовательным включением. На рис. 12.8 показана схема ВЧ генератора на элементе с лям- бдаобразной вольт-амперной характеристикой. Управление его частотой осуществляется за счет изменения динамической емко­сти транзисторов при изменении протекающего через них тока.

Светодиод HL1 стабилизирует рабочую точку и индицирует вклю­ченное состояние генератора.

Генератор на аналоге лямбда-диода, выполненный на поле­вых транзисторах, и со стабилизацией рабочей точки аналогом стабилитрона — светодиодом, показан на рис. 12.9. Устройство работает до частоты 1 МГц и выше при использовании указанных на схеме транзисторов.

Ма рис. 12.10 в порядке сопоставления схем по степени их сложности приведена практическая схема ВЧ генератора на туннельном диоде. В качестве полупроводникового низко­вольтного стабилизатора напряжения использован прямосме- щенный переход высокочастотного германиевого диода. Этот генератор потенциально способен работать в области наибо­лее высоких частот — до нескольких ГГц.

Высокочастотный генератор, по схеме очень напоминаю­щий рис. 12.7, но выполненный с использованием полевого транзистора, показан на рис. 12.11 [Рл 7/97-34].

Прототипом RC-генератора, показанного на рис. 11.18 яв­ляется схема генератора на рис. 12.12 [F 9/71-171; 3/85-131].

нот генератор отличает высокая стабильность частоты, способ­ность работать в широком диапазоне изменения параметров частотозадающих элементов. Для снижения влияния нагрузки на рабочую частоту генератора в схему введен дополнительный каскад — эмиттерный повторитель, выполненный на биполяр­ном транзисторе VT3. Генератор способен работать до частот свыше 150 МГц.

Из числа всевозможных схем генераторов особо следует выделить генераторы с ударным возбуждением. Их работа ос­нована на периодическом возбуждении колебательного конту­ра (либо иного резонирующего элемента) мощным коротким импульсом тока. В результате «электронного удара» в возбуж­денном таким образом колебательном контуре возникают по­степенно затухающие по амплитуде периодические колебания синусоидальной формы. Затухание колебаний по амплитуде обусловлено необратимыми потерями энергии в колебатель­ном контуре. Скорость затухания колебаний определяется добротностью (качеством) колебательного контура. Выходной высокочастотный сигнал будет стабилен по амплитуде, если импульсы возбуждения следуют с высокой частотой. Этот тип генераторов является наиболее древним в ряду рассматривае­мых и известен с XIX века.

Практическая схема генератора высокочастотных колеба­ний ударного возбуждения показана на рис. 12.13 [Р 9/76-52; 3/77-53]. Импульсы ударного возбуждения подаются на коле­бательный контур L1C1 через диод VD1 от низкочастотного генератора, например, мультивибратора, или иного генератора прямоугольных импульсов (ГПИ), рассмотренных ранее в гла­вах 7 и 8. Большим преимуществом генераторов ударного возбуждения является то, что они работают с использованием колебательных контуров практически любого вида и любой резонансной частоты.

Еще один вид генераторов — генераторы шума, схемы ко­торых показаны на рис. 12.14 и 12.15.

Такие генераторы широко используют для настройки раз­личных радиоэлектронных схем. Генерируемые такими устрой­ствами сигналы занимают исключительно широкую полосу частот — от единиц Гц до сотен МГц. Для генерации шума используют обратносмещенные переходы полупроводниковых приборов, работающих в граничных условиях лавинного пробоя. Дня этого могут быть использованы переходы транзисторов (рис. 12.14) [Рл 2/98-37] или стабилитроны (рис. 12.15) [Р 1/69-37]. Чтобы настроить режим, при котором напряжение генерируемых шумов максимально, регулируют рабочий ток через активный нтемент (рис. 12.15).

Отметим, что для генерации шума можно использовать и резисторы, совмещенные с многокаскадными усилителями низ­кой частоты, сверхрегенеративные приемники и др. элементы. Для получения максимальной амплитуды шумового напряжения необходим, как правило, индивидуальный подбор наиболее шу­мящего элемента.

Для того чтобы создать узкополосные генераторы шума, на выходе схемы генератора может быть включен LC- или RC-фильтр.

Генераторы сигналов

Генераторы сигналов – приборы, позволяющие получать электрические, акустические и иного рода импульсы. Устройства бывают разных видов — обычно прибор подбирают под конкретную цель. Решающими факторами при выборе могут оказаться форма прибора, его статические функции и энергетические показатели. Устройство применяют в разных сферах — как в медицине, так и в быту (стиральные машины, микроволновки).

Историческая справка

Первый генератор был создан в 1887 году немецким физиком Германом Герцем. Прибор разрабатывался на основе индукционной катушки (или катушки Румкорфа). Он был искровым и вырабатывал электромагнитные волны. Потом история развивалась так:

  • 1913 г. Другой немецкий ученый, Александр Мейснер, создал электронный генератор с ламповым каскадом и общим катодом.
  • 1915 г. Появилась ламповая (или индуктивная) схема. Включение контура было автотрансформаторным, что отличало его от ранних изобретений. Идея принадлежала американскому физику Ральфу Хартли.
  • 1919 г. На этот раз идея снова принадлежит американцам. Ученый Эдвин Колпитц создал устройство на электронной лампочке, подключаемое к колебательному контуру посредством емкостного разделителя напряжения.

Это было лишь начало. Позже инженерами разных стран было создано множество вариаций электронных генераторов.

Как устроен генератор сигналов?

Устройство генерирует импульсы различной природы для замера параметров электронных приборов. Большинство генераторов работает только при наличии входного импульса, амплитуда которого постоянно меняется.

Стандартная модель сигнального генератора состоит из нескольких частей:

  1. Экран на передней панели. Нужен для отслеживания колебаний и управления ими.
  2. Редактор. Расположен в верхней половине экрана. Позволяет выбрать функцию.
  3. Секвенсор. Размещён чуть ниже редактора, дает информацию о частоте колебаний.
  4. Регулятор. Контролирует и настраивает частоту изменений.
  5. Выходы сигналов. Обычно располагаются под экраном в самом низу прибора. Рядом – кнопка включения оборудования.

Смещение сигнала и его амплитуда обычно регулируются 2 кнопками. Работа с файлами происходит через мини-панель. Она дает пользователю просмотреть результаты тестирования или сохранить их для будущего анализа.

Принцип действия

Рассмотрим схему действия на примере простейшего электронного генератора. Есть проводник и магнитное поле, по которому он движется. В качестве проводника обычно используют рамку.

Принцип действия таков:

  1. Рамка крутится внутри поля и пересекает линии магнитной индукции, отчего образуется электродвижущая сила.
  2. Электродвижущая сила воздействует на ток, который начинает двигаться по рамке.
  3. Электроток проникает в наружную цепь за счет контактных колец.

Схема генератора похожа на схему усилителя. Разница в том, что у первого нет источника входного сигнала. Он заменяется сигналом положительной обратной связи (ПОС).

В процессе обратной связи (ОС) часть выходного сигнала направляется на входную цепь. Структура такого импульса задается спецификой цепи обратной связи. Чтобы обеспечить нужную периодичность колебаний, цепи ОС создают на базе LC или RC-цепей. Частота будет зависеть от времени перезарядки конденсатора.

После формировки в цепи ПОС сигнал отправляется на вход усилителя. Там он умножается в несколько раз и поступает на выход. Оттуда часть отправляется на вход посредством цепи ПОС и снова ослабляется, возвращаясь к исходному значению. Благодаря такой схеме внутри устройства поддерживается постоянная амплитуда выходного сигнала.

Читайте также  Что за диск сцепления мекарм

Как устроен генератор смешанных сигналов?

Принцип действия генератора смешанных импульсов направлен на то, чтобы ускорить образование сигналов и воспроизводить их с максимальной точностью. Передняя панель прибора снабжена органами управления для контроля самых важных и часто изменяемых параметров. Менее востребованные и редко используемые функции можно найти в меню на основном экране.

Регулятором уровня устанавливается амплитуда движения выходного сигнала. Амплитуду и смещение можно регулировать без входа в многоуровневую систему меню.

Отдельный регулятор также позволяет изменить частоту дискретизации путем изменения периодичности выходного сигнала. При этом форму последнего этот настройщик изменить не сможет. Такая функция есть лишь в меню на основном экране редактирования. Форму выбирают при помощи сенсорной панели или мышки. Пользователь открывает нужную страницу и просто заполняет бланк с цифровой клавиатуры или поворотной ручкой.

Виды генераторов сигналов

Приборы различаются по ряду характеристик. Например, по форме сигнала (синусоидальные, прямоугольные, в виде пилы), по частоте (низкочастотные, высокочастотные), по принципу возбуждения (независимое, самовозбуждение). Однако существует несколько основных видов — о них и расскажем подробнее.

Синусоидальный

Прибор усиливает первоначальный синусоидный код в десятки раз. На выходе получается частота до 100 МГц. При этом исходный синус, как правило, не превышает 50 МГц. Генераторы синусоидального импульса активно используют при проверке блоков питания, инверторов и другой высокочастотной техники, а также радиоаппаратуры.

Генератор низкочастотный

Ниже схема самого простого низкочастотного генератора. На ней видно, что в приборе присутствуют переменные резисторы. Они позволяют корректировать форму и частоту сигнала. Изменить силу импульса можно подключенным модулятором KK202.

Такой прибор подойдет для настройки аудиоаппаратуры (звуковых усилителей, проигрывателей). Наиболее доступным вариантом низкочастотного генератора является обычный компьютер. Достаточно скачать драйверы и подключить его к аппаратуре через переходник.

Генератор звуковой частоты

Стандартная конструкция с микросхемами внутри. Напряжение подается в селектор, а сам сигнал генерируется в одной или нескольких микросхемах. Частоту можно настраивать при помощи модуляционного регулятора. Прибор отличается более обширным диапазоном частоты, чем аналоги (до 2000 кГц).

Импульсы произвольной формы

Генераторы с импульсами произвольной формы имеют повышенную точность. Погрешность минимальная — до 3%. Выходной импульс подвергается тонкой регулировке с применением шестиканального селектора. Прибор вырабатывает частоту от 70 Гц.

Устройства делят по степени синхронизации. Зависит она от типа коннектора, который установлен в прибор. Поэтому сигнал может усиливаться за 15-40 ньютон-секунд. Некоторые модели работают на 2 режимах – линейном и логарифмическом. Режим меняется переключателем, за счет чего корректируется амплитуда.

Контроллеры сложных сигналов

В сборке присутствуют только многоканальные селекторы, так как приборы получают импульсы сложной формы. Сигналы многократно усиливаются, режим можно изменить при помощи регулятора. Вариацией такого прибора считается DDS (устройство по схеме прямого цифрового синтеза).

Базовая плата оборудуется микроконтроллерами, которые легко снимаются и ставятся на место. В некоторых моделях можно заменить микроконтроллер одним движением. Если редактор монтированный, ограничители установить нельзя. Прибор генерирует измерительный сигнал мощностью до 2000 кГц с погрешностью до 2%.

Генератор цифрового сигнала

Цифровые генераторы популярны, потому что отличаются высокой точностью. Пользоваться ими удобно, однако они нуждаются в тщательной настройке. Здесь стоят коннекторы KP300, резисторы достигают сопротивления от 4 Ом. Это позволяет добиться предельно допустимого внутреннего напряжения в схеме.

Области применения

Генераторы сигналов используют современные лаборатории разработчиков электронных и измерительных приборов. Одинаковые генераторы могут применяться в кабинетах от начального до продвинутого уровня.

Однако эти функциональные устройства применяют для настройки и тестирования оборудования и в областях, более доступных обывателю. Вот лишь неполный список устройств, которые используют генераторы:

  • мобильные телефоны, техника для передачи данных, радио- и телеприемники;
  • вычислительные приборы;
  • инверторы, источники бесперебойного питания от электричества или импульсов;
  • бытовые приборы (СВЧ-печи, стиральные и посудомоечные машины);
  • измерительные приборы (амперметры, вольтметры, осциллографы);
  • медицинская аппаратура (томографы, электрокардиографы, аппараты УЗИ).

Находчивые пользователи применяют устройства и для иных целей. Например, прибором Tektonix AFG 3000 измеряли емкости, а RStamp SMA100A хорошо показал себя в регулировке аэронавигационных систем.

Что такое генератор колебаний высокой частоты

Назначение и принцип действия

Неотъемлемой частью любого миниатюрного радиопередающего устройства является специальный каскад, который предназначен для генерации высокочастотного сигнала несущей частоты. Главной отличительной особенностью такого каскада, который в соответствии с его назначением называется генератором, является возникновение незатухающих ВЧ-колебаний. Такие колебания в генераторе могут возникать либо самопроизвольно, либо при наличии определенного внешнего воздействия (управляющий импульс и т. п.). Генераторы, в которых колебания возникают самостоятельно, часто называют автогенераторами или самовозбуждающимися генераторами.

С точки зрения схемотехники генераторы высокочастотного сигнала несущей частоты, применяемые в миниатюрных транзисторных радиопередатчиках и радиомикрофонах, чаще всего представляют собой усилительный каскад, между выходом и входом которого включена цепь положительной обратной связи. Применение именно положительной обратной связи объясняется тем, что колебания, подаваемые с выхода усилительного каскада на его вход, должны иметь такую полярность, которая необходима для поддержания уже возникших в каскаде колебаний.

При рассмотрении принципа действия генератора входящий в его состав усилительный каскад можно представить как четырехполюсник, без искажений усиливающий подаваемый на его вход сигнал, то есть функционирующий в нормальном (штатном) рабочем режиме. В этом случае форма выходного напряжения такого каскада будет полностью повторять форму напряжения на его входе, но в тоже время будет отличаться большей амплитудой и в некоторых случаях фазой. Если же теперь выходной сигнал усилителя подать на его вход через специальный каскад (цепь обратной связи), который обеспечит преобразование его амплитуды и, при необходимости, фазы таким образом, чтобы они соответствовали аналогичным параметрам входного сигнала, то подавать на вход каскада какой-либо сигнал извне не потребуется. Это значит, что первоначальный входной сигнал может быть отключен, а вместо него в качестве входного будет использоваться соответствующим образом преобразованный выходной сигнал. В результате каскад продолжает функционировать, но уже не как усилитель, а как генератор сигнала. Таким образом, генератор высокочастотных колебаний можно представить как специальный преобразователь, в котором энергия постоянного тока источника питания преобразуется в энергию переменного тока высокой частоты.

Одной из главных задач, решаемых с помощью цепи обратной связи, является такое преобразование амплитуды выходного сигнала, при котором после прохождения через цепь ОС величина амплитуды подаваемого на вход усилительного каскада будет достаточной для поддержания колебаний в системе. Именно это условие, часто называемое балансом амплитуд, является решающим при выборе определенной глубины обратной связи. При меньшей глубине или слабой обратной связи амплитуда выходного сигнала будет уменьшаться, колебания станут затухающими, что приведет к срыву генерации. При большей глубине или сильной обратной связи амплитуда выходного сигнала будет возрастать. В результате неконтролируемое увеличение амплитуды колебаний может привести к выходу из строя активного элемента усилительного каскада. В лучшем случае активный элемент (например, транзистор) либо войдет в режим ограничения, либо закроется.

Второй задачей, решение которой обеспечивает цепь обратной связи, является преобразование фазы выходного сигнала таким образом, чтобы она по отношению к фазе входного сигнала имела сдвиг 0° или 360°. В этом случае обычно говорят, что выходной сигнал подается на вход усилительного каскада в фазе. Выполнение данного условия, часто называемого балансом фаз, является основополагающим фактором при выборе схемотехнического решения активного элемента и цепи обратной связи. Необходимо отметить, что конкретные особенности усилительного каскада и цепи обратной связи обеспечивают синфазность выходного и входного сигналов лишь на одной частоте. Таким образом, частота формируемых генератором колебаний зависит от суммарного фазового сдвига непосредственно в усилительном каскаде и в цепи положительной обратной связи.

Усиление каскада и передаточная характеристика цепи обратной связи являются комплексными характеристиками и зависят от частоты сигнала. Поэтому в любом генераторе, обеспечивающем формирование незатухающих колебаний, в том числе и высокочастотном, такие колебания имеют вполне определенные амплитуду и частоту, значения которых зависят как от примененных при разработке усилителя и ПОС схемотехнических решений, так и от параметров входящих в их состав элементов. При этом амплитуда и частота формируемого генератором сигнала устанавливаются автоматически. Таким образом, для устойчивой работы генератора с необходимой частотой и амплитудой сигнала необходимо не только правильно выбрать, например, положение рабочей точки транзистора усилительного каскада, но и установить параметры цепи обратной связи (глубина обратной связи и фазовый сдвиг).

При разработке высокочастотных генераторов для миниатюрных транзисторных радиопередатчиков необходимость соблюдения условия баланса фаз имеет решающее значение при выборе схемы включения транзистора в усилительном каскаде. Дело в том, что при включении транзистора по схеме с общим эмиттером фазовый сдвиг между сигналом на его базе и сигналом на коллекторе будет составлять 180°. При выборе такой схемы включения цепь обратной связи, подключаемая между базой и коллектором, должна обеспечивать необходимый фазовый сдвиг. Если же транзистор будет включен по схеме с общей базой или с общим коллектором, то изменять фазу сигнала в цепи обратной связи не потребуется, поскольку фаза выходного сигнала при таких схемах включения совпадает с фазой входного сигнала. Необходимо отметить, что в указанных случаях речь идет о схемах включения транзистора по переменному току.

Генераторы ВЧ

Итак, самый главный блок любого передатчика – это генератор. От того, насколько стабильно и точно работает генератор, зависит, сможет ли кто-то поймать переданный сигнал и нормально его принимать. В интернете валяется просто уйма различных схем жучков, в которых используются различные генераторы. Сейчас мы немного классифицируем все это.

Номиналы деталей всех приведенных схем рассчитаны с учетом того, что рабочая частота схемы составляет 60…110 МГц (то есть, перекрывает наш любимый УКВ-диапазон).

Читайте также  Характеристики синхронного генератора что это такое

«Классика жанра».

Транзистор включен по схеме с общей базой. Резисторный делитель напряжения R1- R2 создает на базе смещение рабочей точки. Конденсатор C3 шунтирует R2 по высокой частоте.

R3 включен в эмиттерную цепь для ограничения тока протекающего через транзистор.

Конденсатор C1 и катушка L1 образуют частотозадающий колебательный контур.

Кондер C2 обеспечивает положительную обратную связь (ПОС), необходимую для генерации.

Механизм генерации

Упрощенно схему можно представить так:

Вместо транзистора мы ставим некий «элемент с отрицательным сопротивлением». По сути – усилительный элемент. То есть, ток на его выходе больше, чем ток на входе (так вот хитро).

К входу этого элемента подключен колебательный контур. С выхода элемента на этот же колебательный контур подана обратная связь (через кондер C2). Таким образом, когда на входе элемента ток увеличивается (происходит перезарядка контурного конденсатора), увеличивается ток и на выходе. Через обратную связь, он подается обратно на колебательный контур – происходит «подпитка». В результате, в контуре устаканиваются незатухающие колебания.

Все оказалось проще пареной репы (как всегда).

Разновидности

В безбрежном инете можно еще встретить такую реализацию этого же генератора:

Схема называется «емкостная трехточка». Принцип работы – тот же.

Во всех этих схемах сгенерированный сигнал можно снимать либо непосредственно с коллектора VT 1, либо использовать для этого катушку связи, связанную с контурной катушкой.

Индуктивная трехточка.

Эту схему выбираю я, и советую вам.

R1 – ограничивает ток генератора
R2 – задает смещение базы
C1, L1 – колебательный контур
C2 – конденсатор ПОС

Катушка L1 имеет отвод, к которому подключен эмиттер транзистора. Этот отвод должен быть расположен не ровно посередине, а ближе к «холодному» концу катушки (то есть тому, который соединен с проводом питания). Кроме того, можно вообще не делать отвод, а намотать дополнительную катушку, то есть – сделать трансформатор:

Эти схемы идентичны.

Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.

Когда на верхней обкладке C1 увеличивается напряжение (то есть, ток во вторичной обмотке течет «вверх»), то на базу транзистора через конденсатор обратной связи C2 подается открывающий импульс. Это приводит к тому, что транзистор подает на первичную обмотку ток, этот ток вызывает увеличение тока во вторичной обмотке. Происходит подпитка энергией. В-общем – то, все тоже довольно просто.

Разновидности.

Мое небольшое ноу-хау: можно поставить между общим и базой диод:

Этот диод ускоряет перезаряд C2, что приводит к увеличению мощности генерируемого сигнала. Однако, вместе с тем, это вносит в сигнал нелинейные искажения, так что на выходе придется ставить фильтры НЧ для подавления паразитных гармоник.

Сигнал во всех этих схемах снимаем с эмиттера транзистора либо через дополнительную катушку связи непосредственно с контура.

Двухтактный генератор для ленивых

Самая простая схема генератора, какую только мне приходилось когда-либо видеть:

В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.

Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовый ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…

Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.

Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.

Двухтактный генератор для трудолюбивых

Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.

Что мы здесь видим?

Видим колебательный контур L1 C1,
А дальше видим каждой твари по паре:
Два транзистора: VT1, VT2
Два конденсатора обратной связи: С2, С3
Два резистора смещения: R1, R2

Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!

Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков

При перезаряде конденсатора в одну или другую сторону, через один из конденсаторов обратной связи поступает ток на соответствующий транзистор. Транзистор открывается, и добавляет энергию в «нужном» направлении. Вот и вся премудрость.

Особо изощренных вариантов исполнения этой схемы я не встречал…

Теперь немного креатива.

Генератор на логических элементах

Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.

Видим страшную схему.

Квадратики с дырочкой в правом боку – это инвертеры. Ну или – «элементы НЕ». Дырочка как раз указывает на то, что сигнал инвертируется.

Что такое элемент НЕ с точки зрения банальной эрудиции? Ну, то есть, с точки зрения аналоговой техники? Правильно, это усилитель с обратным выходом. То есть, при увеличении напряжения на входе усилителя, напряжение на выходе пропорционально уменьшается . Схему инвертера можно изобразить примерно так (упрощенно):

Это конечно, слишком просто. Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно.

Итак, смотрим схему генератора. Имеем:

Два инвертера ( DD1.1, DD1.2)

Колебательный контур L1 C1

Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.

Начнем сначала. Зачем нам нужен резистор?

Резистор создает отрицательную обратную связь (ООС) между выходом и входом элемента DD1.1. Это надо для того, чтобы держать под контролем коэффициент усиления – это раз, а также – чтоб создать на входе элемента начальное смещение – это два. Как это работает, подробно мы рассмотрим где-нибудь в обучалке по аналоговой технике. Пока что уясним, что благодаря этому резистору, на выходе и входе элемента, в отсутствие входного сигнала, устаканивается напряжение, равное половине напряжения питания. Точнее – среднему арифметическому напряжений логических «нуля» и «единицы». Не будем пока на этом заморачиваться, у нас еще много дел…

Итак, на одном элементе мы получили инвертирующий усилитель. То есть, усилитель, который «переворачивает» сигнал вверх ногами: если на входе много – на выходе мало, и наоборот. Второй элемент служит для того, чтобы сделать этот усилитель неинвертирующим. То есть, он переворачивает сигнал еще раз. И в таком виде, усиленный сигнал подается на выход, на колебательный контур.

А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…

Все наверно знают такую вещь: если к входу усилителя подключить микрофон, к выходу – динамик, то при поднесении микрофона к динамику, начинается противный «свист». Это – ни что иное как генерация. Мы же подаем сигнал с выхода усилителя на вход. Возникает ПОС. Как следствие, усилитель начинает генерить.

Ну, короче, посредством LC -цепочки в нашем генераторе создается ПОС, приводящая к возбуждению генератора на резонансной частоте колебательного контура.

Ну что, сложно?
Если (сложно)

Теперь поговорим о разновидностях подобных генераторов.

Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:

Если в цепь ОС элемента DD1.1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:

Если генератор делается из элементов И-НЕ или ИЛИ-НЕ, то входы этих элементов нужно запараллелить, и включать как обычный инвертор. Если используем Исключающее ИЛИ, то один из входов каждого элемента сажается на + питания.

Пара слов о микросхемах.
Предпочтительнее использовать логику ТТЛШ или быстродействующий КМОП.

Серии ТТЛШ: К555, К531, КР1533
Например, микросхема К1533ЛН1 – 6 инверторов.
Серии КМОП: КР1554, КР1564 (74 AC , 74 HC ), например – КР1554ЛН1
На крайний случай – старая добрая серия К155 (ТТЛ). Но ее частотные параметры оставляют желать лучшего, так что – я бы не стал использовать эту логику.

Рассмотренные здесь генераторы – далеко не все, что могут повстречаться вам в этой нелегкой жизни. Но зная основные принципы работы этих генераторов, будет уже намного проще понять работу других, укротить их и заставить работать на себя

Читайте также  Что такое интегралка для генератора

Генератор частот

Генератор частот — это прибор, который может выдавать колебания электрического сигнала различной формы, частоты, амплитуды, продолжительности и так далее. Он используется для разработки радиоэлектронной аппаратуры, а также для ремонта в виде генератора тестовых сигналов. Для профессионального электронщика считается незаменимым устройством на рабочем столе.

Описание генератора частоты

Ко мне прямиком из Китая приехал генератор частот. Как вы видите, он представляет из себя довольно таки солидный прибор.

На лицевой панели генератора частот мы видим множество различных кнопок и крутилок. Эта крутилка предназначена для того, чтобы уменьшать или увеличивать амплитуду сигнала.

Эти кнопки предназначены для изменения формы сигналов.

Здесь можно увидеть такие сигналы, как

Далее с помощью кнопок можно выбрать нужный диапазон, а также подключить какой-либо внешний сигнал.

Под внешним счетчиком здесь имеется ввиду какой-либо периодический сигнал с какого-нибудь генератора частоты либо схемы. Подавая такой сигнал на разъем нашего генератора частоты, мы с легкостью можем определить частоту неизвестного сигнала вплоть до 10 Мегагерц. То есть в данном случае генератор функций выполняет роль частотомера.

Далее идут разъемы.

VCF – Voltage Controlled Frequency. По нашему ГУН. Расшифровывается как Генератор Управляемый Напряжением. Само название говорит нам о том, что мы можем менять частоту сигнала с генератора частоты, подавая на этот разъем какое-либо напряжение. В зависимости от того, какая будет амплитуда подаваемого напряжения, такая и будет частота на выходе генератора частоты.

TTL OUT. ТТЛ – Транзисторно-Транзисторная-Логика. OUT – выход. Этот выход предназначен для тактирования логических микросхем, построенных на так называемой транзисторно-транзисторной логике. То есть это логические элементы, которые в своем составе имеют только биполярные транзисторы и резисторы. Такие микросхемы делают в основном на питание +5 В.

Логический ноль – это уровень напряжения от 0 и до +0,5 В. Уровень логической единички от 2,4 и до +5 В. Поэтому, с этого выхода мы получаем прямоугольный периодический сигнал с чередующимися нулями и единицами: 0101010101… Частоту такого сигнала выставляем с помощью крутилки и кнопок выбора диапазона.

OUTPUT. Выход с генератора. Именно с этого разъема мы и получаем необходимый нам сигнал с генератора функций.

Также небольшой интерес могут представлять из себя кнопки

Написано “attention”, что значит “внимание”. На самом деле там должно быть написано “attenuator”. Аттенюатор – слово не наше, означает как “ослабить, смягчить”. Видать, китайцы сэкономили на переводчике с китайского на английский ). Итак, что за кнопочки -20dB и -40dB? dB – это децибелы. А пока вот вам ссылочка на онлайн-калькулятор. Я за вас уже все посчитал. -20dB это значит, что мы можем ослабить выдаваемый генератором сигнал в 10 раз. -40dB – в 100 раз. А если нажмем сразу на 2 кнопочки разом, то у нас в сумме получится -60dB. Следовательно, мы можем ослабить сигнал в 1000 раз.

Как работает генератор частот

Для того, чтобы наблюдать форму сигнала, которую выдает генератор частот, мы будем использовать цифровой осциллограф.

Итак, мы хотим получить синусоидальный сигнал с частотой в 2 МГц и амплитудой в 5 Вольт. Для этого я выставляю на своем генераторе частоты 2 МГц, синус, размах сигнала 10 Вольт. Размах = 2 амплитуды сигнала.

и получаю вот такую осциллограмму. Как вы видите, генератор частот прекрасно справился со своей задачей.

Как изменить форму сигнала

Для того, чтобы получить некоторые нестандартные сигналы, типа пилы или прямоугольных сигналов с различной скважностью, нам придется задействовать

вот эту кнопочку и крутилку

Пару слов о скважности. Это параметр применяется к прямоугольной форме сигналов.

Величина D (Duty), обратная величине S, называется коэффициентом заполнения

Иллюстрация сигналов с различным коэффициентом заполнения

На экране осциллографа это может выглядеть вот так

Можем также из треугольного сигнала получить пилообразный сигнал

Иногда требуется добавить постоянную составляющую в сигнал. Для этого используем вот эту кнопочку и крутилку.

Смысл этой операции заключается в том, что к переменному току мы добавляем постоянный ток. Если объяснить графически, то это будет выглядеть вот так.

Как вы видите, эта функция без проблем работает в этом генераторе частоты

А также мы без проблем можем замерить этим генератором частот какую-либо частоту, например, с другого генератора. Выставили 15 КГц, он нам тоже показал 15 КГц. Все работает как надо!

Где купить генератор частот

Очень большой выбор генераторов частот можно найти на Алиэкспрессе, н ачиная от простых дешевых

и заканчивая профессиональными

Похожие статьи по теме «генератор частот»

Что такое генератор колебаний высокой частоты

Автор:
Опубликовано 01.01.1970

Итак, на данный момент, мы должны знать и понимать такие неприличные слова:
— транзистор
— колебательный контур
— трансформатор
и пару-тройку прочих слов, не менее ругательных…

Что есть такое ГВЧ? Это такая схемка, на которую подается постоянный ток, а с нее снимается переменный ток, причем — высокой частоты. Вот, значит, сейчас нам надо будет придумать из известных нам элементов такую штукенцию, чтоб при подаче на ее вход постоянного тока, на выходе появлялся переменный.

Все вы помните это:

Правильно! Это — колебательный контур. Чем он знаменателен? Тем что если зарядить конденсатор, а потом к нему подключить катушку — в контуре начнутся затухающие колебания тока. Почему затухающие? Да потому что в реальном мире нет ничего совершенного. Увы, и колебательный контур не миновала сия тяжкая участь. Если бы провод, из которого сделана катушка, имел нулевое сопротивление, если бы энергия колебаний частично не излучалась в пространство в виде радиоволн — вот тогда бы колебания никогда не затухли. Но этому никогда не быть…

Что же делать? Ведь мы так близки к победе! Ведь стоит добиться от катушки незатухающих колебаний — и вот он — долгожданный переменный ток!

А делать вот чего: надо восполнять энергию, затраченную на сопротивление и излучение. И тогда колебания никогда не смогут затухнуть.

Перенесемся в далекие светлые годы детства :). Представьте себя качающимся на качелях. Рядом стоит, скажем, папа, и раскачивает вас. А вы, соответственно, сидите и получаете кайф от процесса, улыбаясь беззубым ртом. Легкий ветер дует вам в лицо, все вокруг то взлетает, то опускается, дух захватывает… Представили. Вот и здорово! А теперь представьте вашего папу. Думаете ему такой же кайф стоять и раскачивать вас, когда через пятнадцать минут по телику начинается футбол, а в сумке безнадежно киснет пиво, пригреваемое лучами теплого весеннего солнышка?… Но из окна смотрит мама. И не дай бог не выгулять по всем правилам свое чадо — крику то будет…

Короче вот такая идиллическая картинка получилась.

Теперь подойдем к процессу с точки зрения физики. Вы на качелях мотаетесь туда-сюда точно так же, как ток по катушке в колебательном контуре бегает то в одну то в другую сторону. Если бы папа не так боялся маму, то он бы давно убежал смотреть футбол. И что бы тогда случилось? А случилось бы, что вас не кому бы стало раскачивать. Так как шарниры качелей не лишены трения, то рано или поздно качели бы встали и ваш кайф прекратился бы. Отсюда делаем вывод:

Папа — это источник восполнения энергии, затраченной на трение шарниров и сопротивление воздуха. Во как!

Какова же задача папы?
Он должен смотреть на качели, и в тот момент, когда они движутся вперед, подталкивать их рукой в направлении движения. Последнее очень важно, поскольку, если он станет толкать против направления движения, то в лучшем случае — сломает руку. В худшем — качели остановятся и ваш кайф прервется в самый неподходящий момент. То есть, папа должен добавлять энергию не когда придется, а только в строго определенные моменты времени: когда качели движутся вперед.

Теперь вернемся от несчастного папы назад — к электричеству. Значит нам необходимо каким-то образом отслеживать движение тока в контуре и в нужные моменты «подливать» энергию. Правильно? Правильно!

Вот вам схема. Если замкнуть выключатель — батарейка подключится к колебательному контуру и подаст на него энергию. Дело за малым — придумать, кто бы смог замыкать этот выключатель по несколько миллионов раз в секунду…

Подсказка: папа отпадает. Он уже смотрит футбол…

Ну раз так — остается только один кандидат — наш старый добрый друг транзистор! Ему-то не проблема закрываться/открываться — это его работа. Ну и пущай работает:

Чего-то на этой схеме не хватает… Точно! Ведь на базу транзистора ничего не идет!

А что туда вообще должно идти?
Естественно — управляющий сигнал!
А откуда?
А…

Во-общем, теперь нам нужен какой-то элемент, который сможет следить за направлением тока в катушке контура и «говорить» транзистору, когда можно открываться, а когда — нельзя.

А давайте мы сделаем вот что: намотаем поверх контурной катушки еще одну катушку. Получится что? Правильно — трансформатор.

Теперь, в те моменты, когда ток в контурной катушке нарастает, напряжение на выходе дополнительной катушки будет положительным. Когда ток в контурной катушке убывает — отрицательным.

Все! Остается только подключить дополнительную катушку к базе транзистора — и она сможет управлять его работой.

Когда ток в катушке контура увеличивается — транзистор будет открываться и «подливать» энергию в контур. Когда ток будет уменьшаться, транзистор открываться не станет, так как на его базе будет отрицательное напряжение. В контуре воцарятся Незатухающие Колебания, слава им.

Источник: nevinka-info.ru

Путешествуй самостоятельно