Что такое генератор акустического шума

Что такое генератор акустического шума

Содержание
  1. 3.4.3. Генераторы акустического шума
  2. Что такое генератор акустического шума
  3. 1.13.2. Принцип действия генераторов шума
  4. Читайте также
  5. Много шума из ничего (Much Ado About Nothing)
  6. Приоритета и прямого действия международного права принцип
  7. 7. ПРИНЦИП НЕЗАВИСИМОСТИ. ПРИНЦИП ГЛАСНОСТИ
  8. Много шума из ничего (Much ado about nothing) Комедия(1598)
  9. Шум против шума
  10. Стрельба без шума
  11. Вдали от шума городского
  12. Много шума из ничего
  13. 2.5.1. Принцип действия
  14. 1.13. Генератор шума как средство защиты от несанкционированного съема информации («прослушки»)
  15. 1.13.3. Генератор акустического «белого» шума
  16. 2.1. Генератор шума на нескольких микросхемах
  17. Генератор белого шума схема
  18. Генератор шума. Принцип действия. Схема
  19. Экранирование
  20. Что нужно для простого экранирования
  21. Как работает прибор?
  22. Что услышит проводящий слежку?
  23. Белые генераторы шума: схема
  24. Защита акустической (речевой) информации
  25. Зашумление
  26. Подавление диктофонов

3.4.3. Генераторы акустического шума

3.4.3. Генераторы акустического шума

Акустические генераторы шума используются для зашумления акустического диапазона в помещениях и в линиях связи, а также для оценки акустических свойств помещений.

Под «шумом» в узком смысле этого слова часто понимают так называемый белый шум, характеризующийся тем, что его амплитудный спектр распределен по нормальному закону, а спектральная плотность мощности постоянна для всех частот.

В более широком смысле под шумом, по ассоциации с акустикой. понимают помехи, представляющие собой смесь случайных и кратковременных периодических процессов. Кроме белого шума выделяют такие разновидности шума, как фликкер-шум и импульсный шум. В генераторах шума используется белый шум, так как даже современны ми способами обработки сигналов этот шум плохо отфильтровывает ся. Ниже приводятся несколько схем различных генераторов шума.

Генератор белого шума

Самым простым методом получения белого шума является использование шумящих электронных элементов (ламп, транзисторов, различных диодов) с усилением напряжения шума. Принципиальная схема несложного генератора шума приведена на рис. 3.29.

Источником шума является полупроводниковый диод — стабилитрон VD1 типа КС168, работающий в режиме лавинного пробоя при очень малом токе. Сила тока через стабилитрон VD1 составляет всего лишь около 100 мкА. Шум, как полезный сигнал, снимается с катода стабилитрона VD1 и через конденсатор С1 поступает на инвертирую щий вход операционного усилителя DA1 типа КР140УД1208. На не инвертирующий вход этого усилителя поступает напряжение смещения, равное половине напряжения питания с делителя напряжения выполненного на резисторах R2 и R3. Режим работы микросхемы определяется резистором R5, а коэффициент усиления — резистором R4. С нагрузки усилителя, переменного резистора R6 , усиленное напряжение шума поступает на усилитель мощности, выполненный на микросхеме DA2 типа К174ХА10. Работа этого усилителя подробно описана в главе 2. С выхода усилителя шумовой сигнал через конденсатор С4 поступает на малогабаритный широкополосный громкоговоритель В1. Уровень шума регулируется резистором R6.

Стабилитрон VD1 генерирует шум в широком диапазоне частот от единиц герц до десятков мегагерц. Однако на практике он ограничен АЧХ усилителя и громкоговорителя. Стабилитрон VD1 подбирается по максимальному уровню шума, так как стабилитроны представляют собой некалиброванный источник шума. Он может быть любым с напряжением стабилизации менее напряжения питания.

Микросхему DA1 можно заменить на КР1407УД2 или любой операционный усилитель с высокой граничной частотой коэффициента единичного усиления. Вместо усилителя на DA2 можно использовать любой УЗЧ.

Для получения калиброванного по уровню шума генератора используют специальные шумящие вакуумные диоды. Спектральная плотность мощности генерируемого шума пропорциональна анодному току диода. Широкое распространение получили шумовые диоды двух типов 2ДЗБ и 2Д2С. Первый генерирует шума полосе до 30 МГц, а второй — до 600 МГц. Принципиальная схема генератора шума на шумящих вакуумных диодах приведена на рис. 3.30.

Резистор R1 типа МЛТ-0,25. Резистор R2 проволочный, он используется совместно с диодом 2ДЗБ. Питание генератора осуществляется от специального блока, схема которого приведена на рис. 3.31.

Цифровой генератор шума

Цифровой шум представляет собой временной случайный процесс, близкий по своим свойствам к процессу физических шумов и называется поэтому псевдослучайным процессом. Цифровая последовательность двоичных символов в цифровых генераторах шума называется псевдослучайной последовательностью, представляющей собой последовательность прямоугольных импульсов псевдослучайной длительности с псевдослучайными интервалами между ними. Период повторения всей последовательности значительно превышает наибольший интервал между импульсами. Наиболее часто применяются последовательности максимальной длины — М-последовательности, которые формируются при помощи регистров сдвига и сумматоров по модулю 2, использующихся для получения сигнала обратной связи.

Принципиальная схема генератора шума с равномерной спектральной плотностью в рабочем диапазоне частот приведена на рис. 3.32.

Этот генератор шума содержит последовательный восьмиразрядный регистр сдвига, выполненный на микросхеме К561ИР2, сумматор по модулю 2 (DD2.1), тактовый генератор (DD2.3, DD2.4) и цепь запуска (DD2.2), выполненные на микросхеме К561ЛП2.

Тактовый генератор выполнен на элементах DD2.3 и DD2.4 по схеме мультивибратора. С выхода генератора последовательность прямоугольных импульсов с частотой следования около 100 кГц поступает на входы «С» регистров сдвига DD1.1 и DD1.2, образующих 8-разpядный pегистpа сдвига. Запись инфоpмации в pегистpа пpоисходит по входам «D». На вход «D» pегистpа DD1.1 сигнал поступает с элементa обратной связи сумматора по модулю 2 — DD2.1. При вккочении питания возможно состояние регистров, когда на всех выходах присутствуют низкие уровни. Так как в регистрах М-последовательности запрещено появление нулевой комбинации, то в схему введена цепь запуска генератора, выполненная на элементе DD2.2. При включении питания последний формирует на своем выходе уровень логической единицы, который выводит регистр из нулевого состояния. На дальнейшую работу генератора цепь запуска не оказывает никакого влияния. Сформированный псевдослучайный сигнал снимается с 8-го разряда регистра сдвига и поступает для дальнейшего усиления и излучения. Напряжение источника питания может быть от 3 до 15 В.

В устройстве использованы КМОП микросхемы серии 561, их можно заменить на микротомы серий К564, К1561 или К176. В последнем случае напряжение питания должно быть 9 В.

Правильно собранный генератор в налаживании не нуждается. Изменением тактовой частоты можно регулировать диапазон частот шума и интервал между спектральными составляющими для заданной неравномерности спектра.

Что такое генератор акустического шума

Акустические генераторы шума используются для зашумления акустического диапазона в помещениях и в линиях связи, а также для оценки акустических свойств помещений.

Под «шумом» в узком смысле этого слова часто понимают так называемый белый шум, характеризующийся тем, что его амплитудный спектр распределен по нормальному закону, а спектральная плотность мощности постоянна для всех частот.

В более широком смысле под шумом, по ассоциации с акустикой, понимают помехи, представляющие собой смесь случайных и кратковременных периодических процессов. Кроме белого шума выделяют такие разновидности шума, как фликкер-шум и импульсный шум. В генераторах шума используется белый шум, так как даже современными способами обработки сигналов этот шум плохо отфильтровывается. Ниже приводятся несколько схем различных генераторов шума.

Генератор белого шума

Самым простым методом получения белого шума является использование шумящих электронных элементов (ламп, транзисторов, различных диодов) с усилением напряжения шума. Принципиальная схема несложного генератора шума приведена на рис. 3.29.

Генератор шума

Источником шума является полупроводниковый диод — стабилитрон VD1 типа КС168, работающий в режиме лавинного пробоя при очень малом токе. Сила тока через стабилитрон VD1 составляет всего лишь около 100 мкА. Шум, как полезный сигнал, снимается с катода стабилитрона VD1 и через конденсатор C1 поступает на инвертирующий вход операционного усилителя DA1 типа КРМ0УД1208. На неинвертирующий вход этого усилителя поступает напряжение смещения, равное половине напряжения питания с делителя напряжения, выполненного на резисторах R2 и R3. Режим работы микросхемы определяется резистором R5, а коэффициент усиления — резистором R4. С нагрузки усилителя, переменного резистора R6, усиленное напряжение шума поступает на усилитель мощности, выполненный на микросхеме DA2 типа К174ХА10. Работа этого усилителя подробно описана в главе 2. С выхода усилителя шумовой сигнал через конденсатор С4 поступает на малогабаритный широкополосный громкоговоритель В1. Уровень шума регулируется резистором R6.

Стабилитрон VD1 генерирует шум в широком диапазоне частот от единиц герц до десятков мегагерц. Однако на практике он ограничен АЧХ усилителя и громкоговорителя. Стабилитрон VD1 подбирается по максимальному уровню шума, так как стабилитроны представляют собой некалиброванный источник шума. Он может быть любым с напряжением стабилизации менее напряжения питания.

Микросхему DA1 можно заменить на КР1407УД2 или любой операционный усилитель с высокой граничной частотой коэффициента единичного усиления. Вместо усилителя на DА2 можно использовать любой У3Ч.

Для получения калиброванного по уровню шума генератора используют специальные шумящие вакуумные диоды. Спектральная плотность мощности генерируемого шума пропорциональна анодному току диода.

Широкое распространение получили шумовые диоды двух типов 2ДЗБ и 2Д2С. Первый генерирует шум в полосе до 30 МГц, а второй — до 600 МГц. Принципиальная схема генератора шума на шумящих вакуумных диодах приведена на рис. 3.30.

Генератор шума на вакуумной лампе

Резистор R1 типа МЛТ-0,25. Резистор R2 — проволочный, он используется совместно с диодом 2ДЗБ. Питание генератора осуществляется от специального блока, схема которого приведена на рис. 3.31.

Блок питания для генератора шума

Цифровой генератор шума

Цифровой шум представляет собой временной случайный процесс, близкий по своим свойствам к процессу физических шумов и называется поэтому псевдослучайным процессом. Цифровая последовательность двоичных символов в цифровых генераторах шума называется псевдослучайной последовательностью, представляющей собой последовательность прямоугольных импульсов псевдослучайной длительности с псевдослучайными интервалами между ними. Период повторения всей последовательности значительно превышает наибольший интервал между импульсами. Наиболее часто применяются последовательности максимальной длины М-последовательности, которые формируются при помощи регистров сдвига и сумматоров по модулю 2, использующихся для получения сигнала обратной связи.

Читайте также  Установка ремня генератора вольво хс90 дизель

Принципиальная схема генератора шума с равномерной спектральной плотностью в рабочем диапазоне частот приведена на рис. 3.32.

Этот генератор шума содержит последовательный восьмиразрядный регистр сдвига, выполненный на микросхеме К561ИР2, сумматор по модулю 2 (DD2.1), тактовый генератор (DD2.3. DD2.4) и цепь запуска (DD2.2), выполненные на микросхеме К561ЛП2.

Тактовый генератор выполнен на элементах DD2.3 и DD2.4 по схеме мультивибратора. С выхода генератора последовательность прямоугольных импульсов с частотой следования около 100 кГц поступает на входы «С» регистров сдвига DD1.1 и DD1.2, образующих 8-разрядный регистр сдвига. Запись информации в регистр происходит по входам «D». На вход «D» регистра DD1.1 сигнал поступает с элемента обратной связи сумматора по модулю 2 — DD2.1 При включении питания возможно состояние регистров, когда на всех выходах присутствуют низкие уровни. Так как в регистрах М-последовательности запрещено появление нулевой комбинации, то в схему введена цепь запуска генератора, выполненная на элементе DD2.2 При включении питания последний формирует на своем выходе уровень логической единицы, который выводит регистр из нулевого состояния. На дальнейшую работу генератора цепь запуска не оказывает никакого влияния. Сформированный псевдослучайный сигнал снимается с 8-го разряда регистра сдвига и поступает для дальнейшего усиления и излучения. Напряжение источника питания может быть от 3 до 15 В.

В устройстве использованы КМОП микросхемы серии 561, их можно заменить на микросхемы серий К564, К1561 или К176. В последнем случае напряжение питания должно быть 9 В.

Правильно собранный генератор в налаживании не нуждается. Изменением тактовой частоты можно регулировать диапазон частот шума и интервал между спектральными составляющими для заданной неравномерности спектра.

1.13.2. Принцип действия генераторов шума

1.13.2. Принцип действия генераторов шума

Не все методы защиты от утечки информации, которые актуальны при рассмотрении защиты помещения, будут эффективны при защите салона автомобиля. В качестве примера можно привести микрофоны, укомплектованные устройствами передачи информации по оптическому каналу в ИК-диапазоне длин волн.

Во-первых, они требуют очень тонкой настройки, что при оперативной разведке затруднительно, во-вторых, они требуют отсутствия помех на пути луча, что обеспечить на улицах города сложно. Также затруднительно использование лазерных микрофонов для снятия информации со стекол автомобиля (по тем же причинам).

Остаются микрофоны с передачей информации по радиоканалу, стетоскопы с передачей информации по радиоканалу, диктофоны и высокочастотное навязывание.

Как правило, среди генераторов шума наиболее популярны устройства, создающие «розовый» или «белый» шум (разумеется, шум нельзя видеть в цветовой гамме).

Для оценки разборчивости речи речевой диапазон целесообразно разбивать на полосы, имеющие одинаковый коэффициент (разборчивость речи). В непрофессиональных системах используют семь октавных полос. Погрешность в расчетах значительно зависит от вида шума и при словесной разборчивости 30–80 % составляет 1–2% для «речеподобной» помехи и 3–5% для «белого» и «розового» шума, а также 15 % для шума с тенденцией спада спектральной плотности 6 дБ на октаву в сторону высоких частот.

Результаты моделирования зависимости словесной разборчивости от интегрального отношения сигнал/шум в пяти октавных полосах на наиболее важном звуковом диапазоне (180-5600 Гц) при различном виде шумовых помех представлены на рис. 1.25.

Критерии эффективности защиты речевой информации во многом зависят от целей, преследуемых при организации защиты, к примеру скрыть смысловое содержание или скрыть тематику разговора.

Процесс восприятия речи в шуме сопровождается потерями составных элементов речевого сообщения. Так, при прослушивании фонограммы перехваченного речевого сообщения (с использованием защиты) возможно установить факт наличия речи, но нельзя установить предмет разговора. Практический опыт показывает, что выяснить основное содержание перехваченного разговора невозможно при словесной разборчивости менее 60–70 %, а краткое содержание – при словесной разборчивости менее 40–50 %. При словесной разборчивости менее 20–30 % затруднено установление даже предмета ведущегося разговора.

В табл. 1.6 приведены значения отношения сигнал/шум в октавных полосах, при которых словесная разборчивость составляет 20 %, 30 % и 40 %.

Таблица 1.6. Значения отношений сигнал/шум, при которых обеспечивается требуемая эффективность защиты акустической информации

По результатам, приведенным в табл. 1.6, видно, что наиболее эффективными являются «розовый» шум и шумовая «речеподобная» помеха. При их использовании для скрытия тематики разговора необходимо обеспечить превышение уровня помех над уровнем скрываемого сигнала в точке возможного размещения датчика на 8, 8 и 9 дБ соответственно. Для «белого» шума и шума со спадом спектральной плотности 6 дБ на октаву это значение составляет соответственно 10 и 13 дБ.

Для выбора генератора виброакустического зашумления необходимо выяснить уровень фонового шума. К примеру, уровень шума вне салона автомобиля будет равен 30–35 дБ.

Среднее значение звукоизоляции для одинарного стекла или герметичной металлической двери равно 30 дБ.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Много шума из ничего (Much Ado About Nothing)

Много шума из ничего (Much Ado About Nothing) Комедия (1598)Действие происходит в городе Мессина на Сицилии. Гонец сообщает губернатору Леонато о прибытии в город после победоносного завершения войны дона Педро, принца Арагонского, со свитой. Рассказывая о сражении, посланец

Приоритета и прямого действия международного права принцип

Приоритета и прямого действия международного права принцип ПРИОРИТЕТА И ПРЯМОГО ДЕЙСТВИЯ МЕЖДУНАРОДНОГО ПРАВА ПРИНЦИП — в конституционном праве ряда государств принцип, согласно которому общепризнанные принципы и нормы международного права являются составной

7. ПРИНЦИП НЕЗАВИСИМОСТИ. ПРИНЦИП ГЛАСНОСТИ

7. ПРИНЦИП НЕЗАВИСИМОСТИ. ПРИНЦИП ГЛАСНОСТИ Согласно ст. 4 Закона о прокуратуре прокуратура осуществляет свою деятельность независимо от федеральных органов государственной власти, органов государственной власти субъектов РФ, органов местного самоуправления, иных

Много шума из ничего (Much ado about nothing) Комедия(1598)

Много шума из ничего (Much ado about nothing) Комедия(1598) Действие происходит в городе Мессина на Сицилии. Гонец сообщает губернатору Леонато о прибытии в город после победоносного завер­шения войны дона Педро, принца Арагонского, со свитой. Рассказы­вая о сражении, посланец

Шум против шума

Шум против шума Помните, как старику Хоттабычу в самолете надоел шум двигателей и он попросту выключил их? Ничего хорошего из этого не вышло. Хорошо, что Волька уговорил мага сделать все, как было, до того, как самолет упал на землю. Ну а если серьезно, как укротить шум?

Стрельба без шума

Стрельба без шума Глуши, брат, глуши. Специальные операции, как правило, стараются проводить тихо. Поэтому такое большое значение получило применение оружия с глушителями. Их, эти самые глушители, иной раз делают даже самостоятельно. Например, в фильме «Брат» показано,

Вдали от шума городского

Вдали от шума городского Первоисточник — стихотворение (1834) русского поэта Федора Николаевича Глинки (1786—1880), которое стало словами широко популярной в России XIX в. песни «Не слышно шума городского»: Не слышно шума городского, На Невской башне тишина, И на штыке у

Много шума из ничего

Много шума из ничего С английского: Much ado about nothing.Название комедии (1600) Уильяма Шекспира (1564—1616), которое стало поговоркой в этом переводе Татьяны Львовны Щепкиной-Куперник (1874-1952).Иронически: о большом волнении, суете по незначительному поводу, о шумных, эмоциональных, но в

2.5.1. Принцип действия

2.5.1. Принцип действия В электрических сетях с двухсторонним питанием и в кольцевых сетях обычные токовые защиты не могут действовать селективно. Например, в электрической сети с двумя источниками питания (рис. 2.15), где выключатели и защиты установлены с обеих сторон

1.13. Генератор шума как средство защиты от несанкционированного съема информации («прослушки»)

1.13. Генератор шума как средство защиты от несанкционированного съема информации («прослушки») Для несанкционированного добывания информации обычно используется широкий арсенал технических средств, из которых малогабаритные технические средства отражают одно из

1.13.3. Генератор акустического «белого» шума

1.13.3. Генератор акустического «белого» шума Технически эффективным является применение активных средств виброакустического зашумления, которые обеспечивают высокую эффективность при относительно небольших материальных затратах и несложности установки.Устройство

2.1. Генератор шума на нескольких микросхемах

2.1. Генератор шума на нескольких микросхемах Ниже рассмотрим устройство широкополосного шумового генератора, оптимизированного для задач защиты от аудиохулиганов, слушающее радио/телепередачи на предельных уровнях громкости. При качественных транзисторах и

Генератор белого шума схема

Принципиальная схема акустического генератора белого шума построена на транзисторе VT1 и использует шумы возникающие в эмиттерном переходе. Полчаемый сигнал будет случайным и хаотическим по частоте, и амплитуде.

Далее хаотический сигнал усиливается транзистором VT2 и операционным усилителем U1. С выхода микросхемы ОУ предусмотрена отводка сигнал на компьютерные колонки, С этого же выхода U1 сигнал поступает на 2 тракта.

Усилитель низкой частоты для вибраторов построен по типовой схеме включения TDA2030. Ее желательно установить на радиатор.

Блок питания акустического генератора белого шума выполнен по классической схема двуполярного стабилизатора напряжения, но более мощного, для возможности применения устройства в больших помещениях или залах. Транзисторы VT4 и VT3 обязательно нужно поставить на радиаторы.

В качестве электромеханических преобразователей можно применить обычные электромагнитные телефоны. Но на их мембраны следует напаять медные таблетки из расчета, что верхний край должен находиться на уровне крышки. По степени отдачи, эти «советские» телефоны являются лучшими. Также можно взять обычные электромагнитные реле или пьезоэлектрические излучатели, но это сильно усложнит конструкцию излучателей.

Читайте также  Электроприводы для дизель генератора

Следующая схема генератора создает электромагнитные радиопомехи в радиоэфире в диапазоне 30 МГц — 1 ГГц. Кроме того эту радиолюбительскую конструкцию можно использовать для блокирования включения радио жучков с дистанционным управлением, т.к воздействует на входные цепи приемника ДУ.

В этой радиолюбительской конструкции использована классическая схема шумового генератора радио диапазона. Поэтому думаю описание не нужно, но следует обратить ваше внимание, что на транзисторы VT1-VT4 нуджно установить на радиаторы. Вместо резисторов R1 и R2 можно поставить один номиналом 4,7 Ома мощностью 10 Вт.

Ток потребления схемы автогенератора для создания радиопомех составляет 300 миллиампер. Все транзисторы необходимо закрепить на алюминиевой пластине или радиаторе. Катушки L1-L3 наматываются проводом диаметром 0,15-0,25 на резистор МЛТ-0,25 примерно по 17 витков. Эту конструкцию можно расположить в корпусе бумажного конденсатора.Эта схема глушит приемники и передатчики с частотой до 150 мегагерц.

Эта глушилка FM диапазона и чуть больше где-то до 200-300 МГц работает очень эффективно. Радиус действия около 50-70 метров, в настройке практически не нуждается.

Катушки индуктивности: L1 -2 витка 0,45 мм на оправке 4мм; L2, L5 — 16 витков ПЭЛШО 0,3 мм на ферритовых кольцах 8*4*2; L3 — 5 витков 0,45 мм на оправке 4мм, L4 — 2 витка 1мм на оправке 8мм, L6 — три витка 0,45 на оправке 4 мм; L7 — пол витка 0,8 мм на оправке 4 мм; L8 — 45 витков 0,5 мм на куске внутренней изоляции от коаксиала, длина намотки 23 мм; L9 — 4 витка 0,45 мм на оправке 4 мм; L10 — 1 виток на оправке 5мм, L11 — 23 витка 0,5 мм на куске внутренней изоляции от коаксиала; Транзистор T1 — КТ368

Предлагаемые схемы простых глушилок предназначены для локального подавления сигналов телевизионных приемников и FM радио диапазон. При данных параметрах устройств, вращением подстроечника можно зашумить помехами любой ТВ канал или любую другую несущую частоту. Глушит прибор где-то на расстоянии 10-15 метров.

Генератор белого шума на одной микросхеме

Катушка индуктивности L1 содержит 10 витков медного провода диаметром один мм на каркасе 10 мм (с отводом от середины). подстроечник в принципе не обязателен. Дроссель L2 накручиваем на резистор МЛТ 0,5 номиналом 100 Ом, провод 0,1 мм и около 100 витков.

При сборке учитывайте, что контурная катушка L1 не должна располагаться на одной оси с дросселем L2 и должна находиться на расстоянии 2 см и более. Антенна отрезок медного провода длиной 20-40 см.

Схема генератора белого шума состоит из двух генераторов, управляемых напряжением и выполнена на отечественной микросхеме 531ГГ1. Один генератор работает постоянно на относительно низкой частоте, полученный сигнал поступает на управляющий вход другого генератора, который работает на высокой частоте 20-70 МГц в зависимости от входного напряжения.

Схема шумогенератора — классическая, но несмотря на простоту, она применяется в шумогенераторах заводского изготовления. В конструкции устройства используется регулируемый блок питания, изменяющий питание генератора от 1.5 V до 18 V при токе до 2А. Это необходимо для оптимизации выходной мощности. Регулировку устройства нужно осуществлять с использованием индикатора поля, измеряя при этом ток потребления, который не должен превышать 2А. Также для регулировки используются подстроечные резисторы VR2, VR3. Для регулировки равномерности спектра желательно использовать анализатор спектра. Заметим, что нужно обязательно применять принудительное воздушное охлаждение и радиатор максимально большого размера.

Диапазон этого акустического генератора от сотен кГц до 1 ГГц. В настройке он не нуждается и начинает работать сразу. Имеет два выхода — обычной (MiddleOut) и высокойИспользование мощного выхода увеливает потребляемый ток и разогрев элементов. Принудительный обдув ветилятором строго обязателен.

Источником шума в этом акустическом генераторе является стабилитрон VD1 типа КС168, который работает в режиме лавинного пробоя даже при небольших токах. Сила тока проходящего через стабилитрон в этой конструкции около 100 мкА. Шум снимается с катода стабилитрона и через конденсатор С1 проходит на инвертирующий вход операционного усилителя DA1 на микросхеме КР140УД1208. На противоположный — неинвертирующий вход ОУ поступает напряжение смещения, которое равно половине напряжения питания с делителя напряжения. Делитель построен на резисторах R2 и R3. Режим работы операционного усилителя зависит от номинала резистора R5, а коэффициент усиления вставляется резистором R4. С нагрузки ОУ, роль которой в данной схеме выполняет резистор R6, усиленное напряжение шума поступает на усилитель мощности, DA2 на универсальной микросхеме К174ХА10. С ее выхода шумовой сигнал через конденсатор С4 проходит на громкоговоритель В1. /p>

Уровень шума задаем переменным резистором R6. Стабилитрон VD1 генерирует шум в диапазоне частот от герц до десяти мегагерц. В случае отсутствия К174ХА10 можно применить любой УНГ, главное чтоб у него был широким диапазоном рабочих частот.

Цифровой генератор белого шума это временной случайный процесс, близкий по своим свойствам к процессу физических шумов и его называют псевдослучайным процессом. Цифровой последовательностью двоичных символов в цифровых акустических генераторах шума называют псевдослучайной последовательностью, которая представляет собой последовательность прямоугольных импульсов с псевдослучайной длительностью и интервалами между ними.

Генератор шума выполнен на цифровых микросхемах: восьмиразрядный регистр сдвига на микросхеме К561ИР2, сумматор по модулю 2 (DD2.1), тактовый генератор (DD2.3, DD2.4) и цепь запуска (DD2.2), на микросхеме К561ЛП2.

Тактовый генератор на DD2.3 и DD2.4 построен по схеме мультивибратора. С его выхода с частотой следования около 100 кГц последовательность прямоугольных импульсов приходит на регистры сдвига DD1.1 и DD1.2, образующих 8-разpядный pегистpа сдвига. При подаче питания может быть состояние регистров, когда на всех их выходах будут низкие уровни. Т.к в регистрах запрещено появление нулевой комбинации, то в схему введена цепь запуска генератора, на элементе DD2.2. При включении питания DD2.2 выдает на своем выходе единицу, которая переведет регистр из нулевого значения. Сформированный псевдослучайный сигнал снимается с восьми разряда регистра сдвига и проходит на усилитель и излучатель. Напряжение в блоке питания может быть в диапазоне от 3 до 15 В.

В радиолюбительской разработке применены КМОП микросхемы серии 561, их в случае отсутствия можно заменить на микросхемы серий К564, К1561 или даже К176. В случае использования 176 серии напряжение питания должно быть девять вольт.

Правильно распаянный и собранный цифровой акустический генератор в настройке не нуждается. Меняя тактовую частоты можно изменять диапазон «белого шума» и интервал между спектральными составляющими.

В резестивном генераторе белого шума ЭДС появляется из-за повышения температуры токопроводящего слоя резистора, который нагревается от постоянного тока, поступающего через фильтр, который выполнен на дросселе L1 и конденсаторе С2. Протекающий ток можно изменять путем подкрутки переменного резистора R2.

Конструктивно радиолюбительсое изобретение выполнено в прямоугольном корпусе из стеклотекстолита, со съемной крышкой. . На передней панели находится ручка резистора R2 со шкалой.

Дроссель L1 — 15 витков провода диаметром 0,6 мм, намотанного на оправке диаметром 4 мм.

Достала парковка отдельных непонимающих водятлов на клумбе возле дома. Есть простой и законный способ их проучить, а именно: собрать простую схему глушилки автомобильной сигнализации. И после этого машину находящуюся в радиусе действия прибора нельзя будет поставить или снять со сигнализации.

Генератор шума. Принцип действия. Схема

Для того чтобы добывать информацию, можно использовать множество средств. Самыми эффективными сегодня являются различные технические миниатюрные устройства, которые можно легко и скрытно установить где угодно, прослушивая или подглядывая за происходящим.

Такие средства используются как со стороны разведки и правоохранительных органов, так и в криминальных структурах. Применяют их иногда частные лица и бизнесмены.

Чтобы испортить слежку злоумышленникам, можно воспользоваться специальным электронным устройством под названием генератор шума (ГШ). Он создает помехи рядом с местами, где необходимо подавить возможные сигналы слежки недоброжелателей.

Существует для этого несколько методов.

Экранирование

Для радиолюбителя такой способ является наиболее простым, предназначенным для защиты от утечки важной конфиденциальной информации. В этом варианте шум образуют через электромагнитное экранирование. За счет источника электромагнитной энергии на экране появляются заряды, а на стенках — токи, у которых поля подобны полю источника, но направление — противоположно. Поэтому происходит компенсация. Для простого электромагнитного экранирования можно воспользоваться подручными материалами.

Что нужно для простого экранирования

Даже неискушенный в вопросах радиоэлектроники радиолюбитель легко поймет, о чем идет речь, и достанет все нижеприведенные материалы, в число которых входят:

  • металлические, в том числе и фольга;
  • для металлизации поверхностей;
  • ткани;
  • стекла с покрытием, проводящим ток;
  • радиопоглощающие;
  • клей, проводящий электричество.

С помощью этих средств получают замкнутый экран, который заземляется.

Кроме применения в доме, экранирование используют и в автомобилях. Чтобы устройство здесь работало эффективно, нужно учитывать окна. Поэтому экранирование должно рассчитываться эквивалентно экрану из стекла. Для этого может применяться вкрапление сетки из металла в стекло или использоваться специальные стекла с покрытием, проводящим ток. Для того чтобы нанести это покрытие, используют специальные устройства магнетронного напыления.

Как работает прибор?

Далеко не все средства, эффективно показывающие себя в помещении, подходят для автомобилей. Примером могут служить микрофоны, снабженные приспособлениями для передачи данных в ИК-диапазоне. Для них потребуется тончайшая настройка, которую в полевых условиях выполнить крайне сложно. Кроме того, должны отсутствовать помехи в направлении луча, что на улице реализовать почти невозможно.

Читайте также  Цепь генератора ваз 21099

По аналогичным причинам не подойдут и лазерные микрофоны. Остаются стетоскопы, диктофоны и навязывание на высоких частотах, реализуемые по радиоканалу.

Самый популярный генератор шума образует белые или розовые шумы. Чтобы разобрать речь, диапазон разбивают на полосы с одинаковым коэффициентом. Если используемая система — непрофессиональная, то имеется семь полос октав. Если разборчивость составляет от тридцати до восьмидесяти процентов, то погрешность будет до двух процентов для помехи речеподобной, до пяти процентов для розового и белого шумов, а также порядка пятнадцати процентов для спадающего шума, имеющего плотность шесть децибел на высокочастотную сторону октавы.

Эффективность защиты информации, передаваемой в речи, зависит от поставленных целей. Например, необходимо скрыть смысл или тему разговора.

Что услышит проводящий слежку?

Речь, при наличии шума, будет восприниматься с потерями частей сообщений. Так, прослушивая фонограмму, где использовался генератор шума, можно будет констатировать, что разговор был. А вот тему его раскрыть не удастся. Проведенные опыты показали, что разборчивость падала примерно на шестьдесят-семьдесят процентов, а при коротком содержании — до сорока-пятидесяти. Понятно, что имея лишь до тридцати процентов понимания речи, установить предмет дискуссии крайне затруднительно.

Опыты показали, что эффективнее всего показывает себя розовый шум, а также речеподобная помеха. Для скрытия разговора необходим генератор шума, осуществляемый помехи на девять децибел. Для белого шума и шума со спадом понадобится десять и тринадцать децибел. Для эффективного действия устройства нужно знать фоновый шум. К примеру, вне салона автомобиля он равен от тридцати до тридцати пяти децибел. Тогда среднее звукоизоляционное значение должно равняться тридцати децибелам.

Белые генераторы шума: схема

Эффективными себя показали акустически-вибрационные средства зашумления. При этом они недорого стоят и легко устанавливаются. Генератор шума работает в акустическом частотном диапазоне, гарантируя снижение разборчивости после записи. Наиболее простым методом белого шума является применение шумящих электронных деталей, которые способствуют усилению напряжения.

Принцип действия приборов заключается в излучении ультразвуковых колебаний, которые не слышатся ухом человека. Дело в том, что люди воспринимают звуки в линейном диапазоне, а микрофон на диктофоне не является линейной деталью. Поэтому на входе устройства возникает интерференция, приводящая к подавлению записи. Так как уровень колебаний ультразвука составляет от восьмидесяти до ста децибел, то он может без вреда для здоровья использоваться и в помещениях, и в транспорте.

Генератор шума «Гном» — одно из устройств, борющихся с побочными электромагнитными излучениями. Выпускалось несколько моделей прибора. Сначала они были громоздкими, а затем уменьшались в размере, оставаясь такими же эффективными. Разработка «Гном 5» является примером компактного и удобного устройства, находящегося под рукой. Принцип действия прибора реализуется в работе с персональным компьютером, защищая его от утечки информации. Размещается устройство в системном блоке.

Наряду со шпионской техникой существуют и специальные устройства для защиты информации. Но никто, кроме нас самих, не будет использовать их. Только в наших руках находится информационная защита. А реализовывать ее или нет — личное решение каждого.

Защита акустической (речевой) информации

Зашумление

Когда пассивные методы защиты не могут обеспечить необходимый уровень безопасности, применяют активные методы защиты, в частности, зашумление.

Для защиты помещений применяют генераторы шума и системы вибрационного зашумления, которые формируют шумовые, «речеподобные» и комбинированные помехи. Наиболее часто из шумовых используются следующие виды помех:

  • «белый» шум — шум с постоянной спектральной плотностью в речевом диапазоне частот;
  • «розовый» шум — шум с тенденцией спада спектральной плотности 3 дБ на октаву в сторону высоких частот;
  • шум с тенденцией спада спектральной плотности 6 дБ на октаву в сторону высоких частот;
  • шумовая «речеподобная» помеха — шум с огибающей амплитудного спектра, подобной речевому сигналу.

Наиболее эффективно информационный сигнал маскируют помехи, близкие к сигналу по спектральному составу.

Самые простые методы получения белого шума сводятся к использованию «шумящих» электронных элементов с усилением напряжения шума (различные диоды , транзисторы , лампы). Более совершенными являются цифровые генераторы шума, которые генерируют сложные колебания в виде временного случайного процесса, близкого по свойствам к процессу физических шумов. Цифровая последовательность двоичных символов в цифровых генераторах шума представляет собой последовательность прямоугольных импульсов с псевдослучайными интервалами между ними. Период повторения всей последовательности значительно превышает наибольший интервал между импульсами.

Средства создания акустических помех можно разделить на следующие виды:

  • генераторы шума в акустическом диапазоне;
  • устройства виброакустической защиты;
  • технические средства ультразвуковой защиты помещений.

Генераторы шума получили достаточно широкое распространение ввиду своей простоты и относительной дешевизны. Принцип защиты – маскировка непосредственно полезного информативного сигнала, чаще всего белым шумом с корректированной спектральной характеристикой. Следует отметить, что работа генератора шума может вызвать дискомфорт у людей, работающих в защищаемом помещении.

Наиболее эффективным активным средством защиты являются устройства виброакустической защиты. Данные устройства позволяют защититься от прослушивания с помощью проводных микрофонов, радиомикрофонов, электронных стетоскопов и т.п. Принцип защиты – внесение виброакустических шумовых колебаний в элементы конструкции здания. Типовая система виброакустической защиты состоит из генератора шума и 6-25 вибрационных излучателей. Дополнительно в состав системы могут включаться звуковые колонки (спикеры). Работает всё следующим образом. Генератор формирует шум в диапазоне звуковых частот. Передача колебаний шума на элементы конструкции производится с помощью пьезоэлектрических и электромагнитных вибраторов (излучателей) с элементами крепления. Так как уровень шума, создаваемого генератором, выше уровня речевого сигнала в твердых телах, но ниже уровня слышимости, этот тип зашумления целесообразно применять во всех случаях, когда существует возможность утечки с помощью структурного звука.

Рассмотрим систему акустических и вибрационных помех «Шорох-3» ( рис. 14.4). Система «Шорох-3» компании «Маском» пришла на смену популярных в России систем «Шорох-1М» и «Шорох-2М», производство которых на настоящий момент остановлено.

Основные технические характеристики данной системы:

  1. число октавных полос в каналах – 6;
  2. число независимых каналов – 2 (на каждый блок);
  3. максимальная выходная мощность одного канала – не менее 5 В;
  4. время непрерывной работы системы без ухудшения основных характеристик – 24 часа.

Помеховый сигнал представляет собою шум с распределением плотностей вероятности мгновенных значений, соответствующим нормальному закону , со спектром частот от 175 до 11500 Гц.

Основные преимущества Шорох-3:

  • Соответствие параметров шумового сигнала требованиям нормативно-методических документов;
  • Постоянный контроль состояния нагрузки и уровня помехового сигнала;
  • Дистанционное включение и выключение системы по проводному или радио каналам связи и возможность голосового управления включением («акустопуск»);
  • Отсутствие каналов утечки информации за счёт акустоэлектрических преобразований в элементах системы;
  • Неограниченное расширение системы (увеличение модулей);
  • Применение широкого спектра вибровозбудителей и акустических излучателей;
  • Возможность оптимальной настройки системы с минимумом паразитных шумов в помещении.

Средство Шорох-3 имеет сертификат соответствия ФСТЭК России.

Рассмотрим также зарубежный виброакустический шумогенератор ANG-2000 (фирма REI, США). Внешний вид представлен на рисунке 14.5.

ANG — 2000 генерирует равномерный нефильтруемый шум в полосе звуковых сигналов, регулирует уровень шумовой помехи и управляет акустическими датчиками OMS — 2000 и вибрационными датчиками TRN — 2000. К одному ANG — 2000 может быть подключено от 1 до 18 датчиков TRN — 2000 и OMS — 2000.

Акустический датчик OMS — 2000 генерируют «белый» акустический шум и используются для зашумления части помещения, например стола ведения переговоров. При этом громкость шума регулируется на AMG-2000. Виброизлучатель TRN – 2000 генерирует сплошную шумовую нефильтруемую вибропомеху на ограждающие конструкции, тем самым обеспечивая противодействие таким видам подслушивающих устройств как проводные микрофоны, вмонтированные в ограждающие конструкции, контактные или прокалывающие микрофоны, радиопередатчики, установленные в электрические розетки, а также лазерные и микроволновые системы съема информации с окон строительных конструкций. Технические средства ультразвуковой защиты помещений появились сравнительно недавно. Их отличительная особенность – воздействие на микрофонное устройство и его усилитель ультразвуковым сигналом с мощностью, достаточной для блокирования усилителя или возникновения значительных нелинейных искажений. Преимуществом данных устройств является их работа в ультразвуковом диапазоне, практически незаметная для человека.

Во время работы генераторов шума и устройств виброакустической защиты возникают паразитные шумы, которые нарушают нормальные условия труда и вносят определенную долю дискомфорта в защищаемом помещении. При этом увеличение мощности помехи приводит к увеличению мощности паразитного акустического шума. Поэтому одной из основных задач производителей «зашумляющей» техники является обеспечение соответствия параметров шумового сигнала требованиям нормативно-методических документов.

Подавление диктофонов

Диктофон является одним из наиболее популярных средств для съема информации. Это обусловлено простотой использования, малыми размерами и относительной дешевизной данных устройств. Поэтому в настоящее время вопрос подавления диктофонов часто выделяют в отдельную тему при рассмотрении способов защиты информации от утечки по акустическим каналам утечки.

Для подавления диктофонов используют генераторы мощных шумовых сигналов дециметрового диапазона частот. Эти сигналы воздействуют на микрофонные цепи и усилительные устройства диктофонов и записываются на диктофон вместе с полезными сигналами. Зона, в которой устройство может подавлять диктофоны, зависит от мощности излучения, свойств антенны и типа зашумляющего сигнала. Средний радиус зоны подавления – 5 метров, ширина сектора – 30-80 градусов.

Источник: nevinka-info.ru

Путешествуй самостоятельно