Что такое асинхронный момент генератора
- АСИНХРОННЫЕ РЕЖИМЫ РАБОТЫ ГЕНЕРАТОРОВ
- Асинхронный генератор
- Принцип работы
- Возможность управления
- Преимущества и области применения
- Виды асинхронных машин
- Видео
- Асинхронный электрический генератор.Возбуждение асинхронного генератора
- Принцип работы асинхронного электрического генератора
- Способы регулирования напряжения автономного асинхронного генератора. Самовозбуждение асинхронного электрического генератора
- Описание процесса самовозбуждения на принципе остаточной намагниченности магнитной цепи.
- Асинхронный режим работы генераторов
- Генераторы переменного тока
- Синхронный генератор. Принцип действия
- Способы возбуждения синхронных генераторов
- Асинхронный генератор. Отличия от синхронного
- Асинхронный режим. Причины возникновения и признаки асинхронного режима
- Страницы работы
- Содержание работы
АСИНХРОННЫЕ РЕЖИМЫ РАБОТЫ ГЕНЕРАТОРОВ
При потере возбуждения из-за неисправности возбудителя, расцепления полумуфт между ротором и возбудителем, обрыва в цепи ротора, случайного отключения АГП и по любой другой причине генератор переходит в асинхронный режим. При этом по мере снижения магнитного потока, создававшегося до этого током в обмотке ротора, генератор начинает потреблять реактивную мощность из сети.
Равновесие между уменьшающимся до нуля синхронным электромагнитным моментом и вращающим моментом турбины нарушается, и частота вращения генератора начинает возрастать сверх синхронной. Под воздействием магнитного поля от тока статора, в зубцах и клиньях ротора и в его обмотке, если она остается замкнутой на возбудитель или замкнется на резистор самосинхронизации, появятся токи с частотой скольжения. Магнитный поток от этих токов, взаимодействуя с магнитным полем статора, создает тормозящий асинхронный момент, что обеспечивает выдачу генератором активной мощности в сеть при асинхронном режиме. Асинхронный тормозящий момент с увеличением скольжения ротора возрастает. Когда он станет равным вращающему моменту турбины, дальнейшее повышение скольжения прекратится. Наступит установившийся асинхронный режим.
Реагируя на увеличение частоты вращения, регулятор частоты вращения турбины сокращает поступление пара (воды) и тем самым уменьшает активную мощность. Поэтому; как правило, в результате потери возбуждения активная мощность на генераторе снижается.
Если при увеличении асинхронного тормозящего момента скольжение изменяется мало (жесткая кривая асинхронного момента), а максимальный асинхронный момент, развиваемый генератором, достаточно велик, то установившийся асинхронный режим наступает при небольшом скольжении и уменьшение активной мощности невелико.
Турбогенераторы ТВФ, ТВВ и ТГВ в области малых скольжений имеют достаточно жесткую кривую асинхронного момента. При работе без возбуждения с активной нагрузкой 0,5—0,6 номинальной, даже при разомкнутой обмотке ротора, скольжение у них не превышает 0,3—0,8%. Потери в роторе при этом составляют 0,3—0,9 номинальных потерь на возбуждение, а ток статора около 1,0—1,15 номинального.
Но максимальный асинхронный момент у турбогенераторов с непосредственным охлаждением значительно ниже, чем у машин с косвенным охлаждением. Поэтому потеря возбуждения у них при нагрузках, близких к номинальным, сопровождается повышенными скольжением и током статора. Из-за повышения частоты вращения до недопустимых пределов может произойти отключение турбины действием автомата безопасности. Для исключения этого на турбинах 300 МВт начали применять быстродействующие ‘электрогидравлические приставки к регуляторам, удерживающие частоту вращения в допустимых пределах и автоматически разгружающие турбогенераторы до допустимых пределов.
Токи, появляющиеся в зубцах, клиньях и бочке ротора, при асинхронном режиме турбогенератора вызывают нагрев ротора.
При повышенном скольжении ток статора может значительно превышать номинальное значение, что может привести к перегреву обмотки статора.
Из-за возрастания результирующей магнитной индукции в торцевых областях турбогенератора при потере возбуждения увеличивается нагрев крайних пакетов стали и конструктивных элементов торцевых зон статора.
В асинхронном режиме в обмотке ротора наводится напряжение. Если обмотка разомкнута или включена не на электромашинный возбудитель, а на систему выпрямителей возбуждения, исключающую прохождение тока обратной полярности, то при больших скольжениях наведенное напряжение может достигнуть опасного для обмотки ротора и выпрямителей значения. Кроме того, при разомкнутой обмотке среднее значение асинхронного момента меньше, а скольжение больше, чем при замкнутой. Поэтому при переводе генератора в асинхронный режим обмотку ротора необходимо автоматически или ручным отключением АГП замыкать на активное сопротивление (самосинхронизации или гасительное).
Использование асинхронного режима для оставления в работе генератора при потере возбуждения хотя бы на время, необходимое для перевода на резервное возбуждение,
позволяет в большинстве случаев избежать аварийных остановок генераторов. Но при этом необходимо соблюдать следующие условия.
Для турбогенераторов с косвенным охлаждением активная нагрузка должна быть не выше 60 % номинальной, а продолжительность режима не более 30 мин.
Турбогенераторы с непосредственным охлаждением мощностью до 300 МВт включительно по условию нагрева элементов торцевых зон статора, особенно крайних пакетов активной стали, непосредственно соприкасающихся с обмоткой, могут работать без возбуждения 15 мин (генераторы ТВФ —30 мин) с нагрузкой не более 40 % номинальной. Разгрузка до допустимого предела должна производиться вручную или автоматически в течение 2 мин. При этом время разгрузки до 60 % номинальной для турбогенераторов менее 150 МВт не должно превышать 60 с, а для турбогенераторов большей мощности—30 с.
В гидрогенераторах из-за большого скольжения (3— 5%), обусловленного меньшим, чем в турбогенераторах, асинхронным моментом, при асинхронном режиме быстро перегревается успокоительная обмотка. Поэтому работа гидрогенераторов в асинхронном режиме не допускается, и при потере возбуждения они отключаются специальной защитой от токовой перегрузки статора.
При потере возбуждения необходимо снизить активную нагрузку до допустимых значений (если нет автоматики) и попытаться доступными со щита управления средствами (изменением положения штурвала шунтового реостата, воздействием на корректор и компаундирование и т.д.) восстановить возбуждение. Если сделать это не удается, следует перейти на резервное возбуждение с отключением на время перехода АГП.
Генератор может выпасть из синхронизма при недостаточном возбуждении или в результате аварии в системе. Для восстановления синхронизма увеличивают ток возбуждения и снижают активную нагрузку. Если генератор не войдет в синхронизм, он должен быть отключен от сети.
Дата добавления: 2016-06-02 ; просмотров: 2493 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Асинхронный генератор
Все известные виды генераторных устройств по особенностям своей работы делятся на синхронные и асинхронные машины, причем наибольшее распространение получила именно последняя разновидность. Их конструкция и принцип действия аналогичны асинхронным двигателям, но преобразование энергии в генераторе происходит в обратном направлении (из механической в электрический её вид). С тем, как выглядит асинхронный генератор в натуре, можно ознакомиться на рисунке ниже.
Подобно двигателям асинхронного типа, включённым в реверсном режиме (на торможение), при генерации энергии наблюдается примерно тот же эффект, приводящий к её частичному рассеиванию в виде тепла. Из этого следует, что КПД такого устройства сравнительно невелико.
Принцип работы
Хорошо усвоить принцип работы асинхронного механизма поможет предварительное ознакомление с основами функционирования генераторных машин синхронного типа. Дело в том, что синхронные и асинхронные генераторы по своему устройству и способу действия очень схожи и отличаются лишь небольшими деталями (конструкцией вращающегося ротора, в частности).
В механизмах первого класса используется ротор с размещёнными на нем постоянными магнитами. При его вращении от механического привода магнитные элементы наводят в статоре меняющееся по величине и направлению э/м поле, обеспечивающее протекание переменного тока в подключённой к его зажимам нагрузке. При этом сам ротор вращается без рассогласования с создаваемой им в катушках ЭДС (синфазно с ней).
В отличие от синхронных машин, асинхронный генератор характеризуется наличием небольшого отставания вращения роторного элемента устройства по отношению к наводимому в статоре электромагнитному полю. Последнее как бы тормозит его движение, что принято называть «эффектом скольжения».
Обратите внимание! Указанное явление объясняется особенностью конструкции ротора АГ, изготавливаемого в виде короткозамкнутой цельной решётки (так называемого «беличьего колеса»). Её внешний вид приводится на фото ниже.
При вращении приводного вала под воздействием внешнего механического импульса (от двигателя внутреннего сгорания, например) за счёт остаточного магнетизма статора в решётке такого ротора наводится собственная ЭДС. Вследствие этого оба поля (и подвижное, и неподвижное) начинают взаимодействовать друг с другом в динамическом режиме.
Поскольку поле в обмотках ротора наводится с задержкой относительно неподвижного статора генератора, он несколько отстаёт от наводимого в ней э/м поля (то есть вращается асинхронно).
Возможность управления
Ещё одной особенностью синхронного генератора (как, впрочем, и асинхронного) является то, что частота и амплитуда наводимой на зажимах статора ЭДС существенно зависит от скорости вращения ротора.
Важно! С изменением подключённой к генератору активной нагрузки пропорционально ей меняется и частота вращения вала генератора, что приводит к изменению характеристик создаваемой в статоре ЭДС.
Указанный недостаток вынуждает устанавливать в устройствах синхронного и асинхронного типа электронный регулятор напряжения и частоты, обеспечивающий поддержание этих параметров на должном уровне (схема регулятора приводится ниже).
Поскольку асинхронный генератор работает по принципу рассогласованного вращения полей подвижной и неподвижной части, обеспечить регулирование выходных параметров внутри системы не удаётся. Это объясняется невозможностью организовать мгновенную обратную связь по напряжению путём подачи части выходного сигнала со статора на ротор (в АГ могут применяться лишь внешние стабилизаторы напряжения).
В этом заключается ещё одно отличие асинхронных агрегатов от их синхронных аналогов, которые по всем остальным характеристикам очень схожи с первыми.
Преимущества и области применения
К числу достоинств асинхронных генераторов относят следующие их свойства:
- АГ устойчивы к перегрузкам и КЗ, а также имеют сравнительно простую конструкцию (этим они отличаются от более сложных в исполнении синхронных машин);
- Показатель нелинейных искажений синусоиды у них не превышает 2-х процентов (сравните 15 % у их синхронных аналогов);
- Благодаря низкому значению клирфактора, асинхронные устройства гарантируют высокую устойчивость работы подключённых к ним БИП и ТВ приёмников;
- При электропитании сварочного оборудования они обеспечивают существенное улучшение качества сварки;
- Для стабилизации выходного напряжения в них могут применяться внешние устройства автоматического регулирования;
- Роторы АГ при вращении выделяют ограниченное количество тепла, для компенсации которого не требуется мощных вентиляторных устройств.
Последнее свойство позволяет надёжно герметизировать внутреннюю полость агрегата, то есть защитить её от проникновения пыли и грязи. Благодаря этому обстоятельству существенно расширяется сфера применения асинхронных машин, способных работать в условиях большой запыленности и повышенной влажности.
Возможность герметизации способствует тому, что электрогенераторы асинхронного типа имеют больший показатель по сроку службы и могут эксплуатироваться при пониженных температурах. Добавим к этому, что к каждой из фазных обмоток этих агрегатов допускается подключать нагрузки различной мощности.
Дополнительная информация. Допустимый показатель неравномерности фазных нагрузок (разница потребляемых ими токов) составляет для АГ порядка 70%, что невозможно реализовать при работе с синхронными агрегатами.
К легко устранимому в процессе эксплуатации недостатку следует отнести довольно «тяжелые» пусковые характеристики генератора, что удаётся исправить за счёт установки в них специальных стартовых усилителей (рисунок далее по тексту).
Указанные устройства обеспечивают возможность плавного вывода генератора в рабочий режим даже при значительных по величине пусковых токах.
Во всём остальном АГ обладают бесспорными преимуществами над синхронными машинами, некоторые различия с которыми были рассмотрены ранее. Благодаря этим достоинствам, они широко применяются в качестве источников электроэнергии в следующих хозяйственных областях:
- Для энергоснабжения оборудования с реостатным или рекуперативным режимом торможения (подъёмные краны, транспортёры и тому подобное);
- В промышленном оборудовании, не нуждающемся в компенсации паразитной реактивной мощности и к которому не предъявляют высоких требований по качеству поставляемой энергии;
- В бытовых и полевых условиях, где требуются источники дешёвой электроэнергии с механическим приводом от дизельного двигателя;
- В качестве мощного зарядного устройства, обеспечивающего подзарядку АКБ в автомастерских, например.
Помимо этого, они могут использоваться как источники электроснабжения, к которым подключаются сварочные агрегаты, а также для обеспечения бесперебойного питания особо важных объектов здравоохранения.
Виды асинхронных машин
Различные виды АГ могут отличаться по следующим рабочим характеристикам:
- Типом вращающейся части генерирующего устройства – его ротора;
- Количеством выходных или статорных обмоток в генераторе (числом рабочих фаз);
- Схемой включения катушек трехфазного генератора – треугольником или звездой, а также способом их размещения и укладки на полюсах статора (фото ниже);
- Наличием или отсутствием отдельной обмотки возбуждения.
В соответствие с первым из этих признаков, все известные разновидности АГ оснащаются короткозамкнутым или фазным ротором. Первый из них изготавливается в виде цельной конструкции цилиндрической формы, состоящей из отдельных штырей с двумя замыкающими их кольцами (типа «беличье колесо»).
Фазный ротор, в отличие от своего короткозамкнутого аналога, имеет индуктивную обмотку из изолированного провода, обеспечивающую создание динамического электромагнитного поля. Из-за особенностей своей конструкции такой ротор имеет высокую стоимость изготовления и нуждается в специализированном обслуживании.
Выходные обмотки статора, как и весь генератор, могут быть однофазными или трехфазными, что определяется непосредственным назначением данного агрегата (когда требуется источник напряжения 220 или 380 Вольт). Относительно первого из этих исполнений всё достаточно ясно, а вот у трехфазной модификации АГ имеется ещё одна особенность, касающаяся электрической схемы включения обмоток.
Известно, что для формирования любой трехфазной питающей сети в электротехнике применяются два вида включения обмоток, смещённых в векторном представлении одна относительно другой на 120 градусов. Это:
- Включение звездой, когда начала катушек соединены в одной точке, где формируется нулевая жила, а их концы расходятся по трём линиям питания (вместе с нулевым проводом их получается четыре, как это указано на фото ниже);
- Подсоединение по схеме «треугольник», при котором конец одной катушки соединяется с началом второй и так далее до полного замыкания цепочки. Второй вариант включения используется в 3-х проводных линиях энергоснабжения, поскольку в этой схеме отсутствует нулевой провод.
В каждом изделии АГ подключение по той или иной схеме реализуется вполне конкретными способами, позволяющими поместить провода всех обмоток статора между полюсами его сердечника. Они наматываются таким образом, чтобы каждая секция фазных катушек A, B и C была сдвинута по окружности одна относительно другой точно на 120 градусов.
В заключение обзора генераторных устройств обратим внимание на возможность изготовления АГ из асинхронного двигателя. Подобная перспектива появляется, благодаря известному принципу обратимости действия электрических машин, согласно которому направление преобразования энергии может выбираться произвольно.
Видео
Асинхронный электрический генератор.Возбуждение асинхронного генератора
Принцип работы асинхронного электрического генератора
Во всех случаях асинхронная электрическая машина потребляет из сети реактивную мощность, необходимую для создания магнитного поля. При автономной работе асинхронной электрической машины в генераторном режиме магнитное поле в воздушном зазоре создается в результате взаимодействия магнитной движущийся силы магнитной силы всех фаз и магнитной движущийся силы обмотки ротора. Характер распределения магнитной движущийся силы точно такой же, как и в асинхронном электрическом двигателе(АД) , он также определяет характер распределения магнитного поля на полюсном делении. В асинхронном генераторе этот поток весьма близок к синусоидальному и при вращении ротора индуцирует в фазах статора и в обмотке ротора ЭДС Е| и Е2, которые можно принять синусоидальными.
В отличие от асинхронного электрического двигателя в асинхронном электрическом генераторе в данном случае ЭДС Е1 и Е2 являются активными, поддерживают ток в соответствующих цепях и в нагрузке, подключенной к выходным зажимам.
В установившемся режиме работы основные соотношения для асинхронного электрического генератора с самовозбуждением определяются из схемы замещения. Основное отличие только в том, что к ее выводам подключено сопротивление нагрузки 2Н = Кн +]ХН и конденсаторы для обеспечения самовозбуждения и регулирования напряжения при изменении нагрузки асинхронного электрического генератора с сопротивлениями Хс = 1/соС и Хск = 1/соСк.
Как видно, напряжение при работе под нагрузкой изменяется как за счет падения напряжения на сопротивлениях r1 и х1, так и за счет снижения магнитного потока Фот , связанного с размагничивающим действием магнитной движущийся силы ротора. Если магнитная цепь асинхронного электрического генератора выполнена с достаточно сильным насыщением, то поток Фот остается почти постоянным и напряжение U1 при увеличении нагрузки изменяется в меньшей степени, а его внешняя характеристика получается более «жесткой».
Способы регулирования напряжения автономного асинхронного генератора. Самовозбуждение асинхронного электрического генератора
Особенности самовозбуждения асинхронного генератора. Асинхронный элетродвигатель, подключенный к трехфазной сети переменного тока, при частоте вращения ротора, больше, чем частота вращения поля статора, переходит в генераторный режим и отдает в сеть активную мощность, потребляя из сети реактивную мощность, необходимую для создания вращающегося магнитного поля взаимной индукции. Тормозной электромагнитный момент, действующий на роторе, преодолевается приводным двигателем — дизелем, гидротурбиной, ветродвигателем и т.п.
Для возбуждения асинхронного электрогенератора необходимо наличие источника реактивной мощности — батареи конденсаторов или синхронного компенсатора, подключенных к обмотке статора. При этом почти естественной представляется работа асинхронного генератора при сверх синхронном скольжении, когда скорость вращения ротора выше скорости вращающегося магнитного поля. Однако практически асинхронный генератор может возбуждаться при частоте вращения ротора, значительно меньшей синхронной, причем значения напряжения и частоты тока оказываются пропорциональными частоте вращения ротора и, кроме того, зависящими от схемы соединения конденсаторов. Так, в эксперименте ( по опытным данным гл. инж. Штефана А.М. (НК ЭМЗ, г. Н.Каховка)) конденсаторный асинхронный мотор-редуктор типа АИРУ112-М2 при соединении батареи конденсаторов емкостью 3×120 мкФ в «звезду» возбуждается при скорости пр= 2133 об/мин с напряжением ГГф = 60 В и током фазы 1ф = 0,8 А, а при соединении тех же конденсаторов в «треугольник» напряжение =52 В и ток 1ф = 1,4А возникают при скорости пр= 1265 об/мин.
Весьма интересное явление наблюдалось в асинхронном генераторе серии А ИМН 90-L4 при включении емкости 40 мкФ только в одну из трех фаз. В этом случае наступило при скорости п2 = 1369 об/мин с параметрами U1ф = =209 В, I = 1,29 А, Г = 44 Гц. При емкости С = 60 мкФ, включенной в одну из фаз, параметры возбуждения асинхронного электрогенератора были равны: п2 — 1300 об/мин, U = 500 В, I = 6,4 А, Г = 124 Гц. При увеличении частоты вращения ротора до синхронной (1500 об/мин) наблюдалось увеличение частоты тока до 400Гц. В некоторых случаях, наоборот, не удавалось добиться устойчивого возбуждения асинхронного генератора даже при сверх синхронной частоте вращения ротора. Например, для намагниченных гладких стального массивного и шихтованного роторов самовозбуждения не возникало при любых величинах присоединенной емкости.
Для массивного стального ротора с тонким экраном из меди, а также для массивного стального зубчатого ротора с торцовыми медными концами АГ устойчиво возбуждается при расчетном значении емкости.
Таким образом, физические процессы самовозбуждения асинхронного генератора с полным основанием можно отнести к недостаточно изученным, что связано, по нашему мнению, с преимущественным использованием до настоящего времени АМ в качестве двигателя, с разработкой для него теории, расчетных методик и проектирования, а для генераторного режима эти машины проектировались и выпускались достаточно редко.
В маломощных системах генерирования применяются, как правило, АМ, предназначенные для работы в двигательном режиме с конденсаторным возбуждением.
Описание процесса самовозбуждения на принципе остаточной намагниченности магнитной цепи.
Современные работы по самовозбуждению АГ с помощью статических конденсаторов построены на трех подходах. Один из них базируется на принципе остаточной намагниченности магнитной цепи машины, начальная ЭДС от которой затем усиливается емкостным током в статоре . Рассмотрим этот подход.
Автономная работа асинхронного генератора в режиме самовозбуждения от потока остаточного намагничивания возможна, если к выводам обмотки статора подключить конденсаторы, необходимые как источник реактивной мощности от для возбуждения магнитного поля асинхронного электрогенератора, а при его работе на активно-индуктивную нагрузку эти конденсаторы должны служить источником реактивной мощности 0Н и для нагрузки.
Асинхронный режим работы генераторов
Такой режим возникает при потере возбуждения генераторов вследствие повреждений в системе возбуждения или ошибочных отключений автомата гашения поля, а также при выпадении машины из синхронизма в результате коротких замыканий в сети. Ниже рассматривается режим, обусловленный потерей возбуждения.
С уменьшением тока возбуждения уменьшается тормозящий электромагнитный момент генератора; при некотором значении тока возбуждения этот момент оказывается меньше вращающего момента турбины и генератор выпадает из синхронизма. За счет избыточного вращающего момента ротор ускоряется. Магнитное поле статора, вращающееся в пространстве с синхронной .частотой вращения, пересекает ротор и наводит в теле ротора, в демпферных обмотках и в обмотке возбуждения (если она замкнута) токи с частотой скольжения.
Эти токи создают тормозящий асинхронный момент, и генератор начинает выдавать активную мощность в сеть. Частота вращения ротора увеличивается до тех пор, пока асинхронный момент не станет равным вращающему моменту турбины. Так как регулятор частоты вращения турбины при увеличении частоты вращения действует на уменьшение количества пара или воды, пропускаемой через турбину,
Рис. 19-23. Характеристики турбины и асинхронных моментов генераторов.
I — характеристика регулирования турбины; 2— асинхронный момент турбогенератора; 3—асинхронный момент гидрогенератора с демпферными обмотками; 4—асинхронный момент гидрогенератора без демпферных обмоток. то с увеличением частоты вращения вращающий момент турбины уменьшается от т до m1 и т2, определяемых точками пересечения характеристики регулирования турбины (кривая / на рис. 19-23) с характеристиками асинхронных моментов генераторов (кривые 2 и 3). При этом активная мощность, развиваемая генераторами, также уменьшается от Po=mo до Р1 = m1 , и Р2= т2.Скольжение s, с которым работает генератор в асинхронном режиме, определяет потери мощности в роторе и его нагрев (большему скольжению соответствуют большие потери и нагрев ротора) Чем больше максимальный асинхронный момент и круче кривая асинхронного момента генератора, тем с большей мощностью и при меньшем скольжении он работает. В асинхронном режиме генератор потребляет из сети большую реактивную мощность для намагничивания. Поэтому напряжение на выводах генератора и в сети снижается. Потребляемый реактивный ток зависит от индуктивных сопротивлений генератора хd и хq и скольжения s, с которым работает генератор: чем больше xd и xq и меньше s, тем меньше потребляемый реактивный ток. Гидрогенераторы без демпферных обмоток имеют небольшой асинхронный момент и пологую характеристику асинхронного момента (кривая 4), поэтому в асинхронном режиме они развивают большую частоту вращения и снижают нагрузку почти до нуля. Гидрогенераторы с демпферными обмотками имеют больший асинхронный момент и более крутую характеристику асинхронного момента (кривая 3). Однако s велико (3—5%), поэтому возникает опасность перегрева демпферной обмотки. Кроме того, у ГГ индуктивные сопротивления xd и xq меньше, чем у ТГ, поэтому, даже работая без активной нагрузки, они потребляют из сети большой реактивный ток (он превышает номинальный ток статора, так как хq 2 t ≤ B/Iном 2
где /2 — ток обратной последовательности в долях от номинального; Iном — номинальный ток генератора, А; В —импульс квадратичного тока к. з., А 2 с.
Значение B/Iном 2 принимается равным для гидрогенераторов с косвенным охлаждением 45 с, для турбогенераторов с косвенным охлаждением 30 с идля турбо- и гидрогенераторов с непосредственным охлаждением 8 с.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Генераторы переменного тока
Генератор — устройство, преобразующее один вид энергии в другой.
В данном случае рассматриваем преобразование механической энергии вращения в электрическую.
Различают два типа таких генераторов. Синхронные и асинхронные.
Синхронный генератор. Принцип действия
Отличительным признаком синхронного генератора является жёсткая связь между частотой f переменной ЭДС, наведённой в обмотке статора, и частотой вращения ротора n , называемой синхронной частотой вращения:
n = f / p
где p – число пар полюсов обмотки статора и ротора.
Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:
n = 60·f / p
На рис. 1.1 представлена функциональная схема синхронного генератора. На статоре 1 расположена трёхфазная обмотка, принципиально не отличающаяся от аналогичной обмотки асинхронной машины. На роторе расположен электромагнит с обмоткой возбуждения 2, получающей питание постоянным током, как правило, через скользящие контакты, осуществляемые посредством двух контактных колец, расположенных на роторе, и двух неподвижных щёток.
В некоторых случаях в конструкции ротора синхронного генератора вместо электромагнитов могут использоваться постоянные магниты, тогда необходимость в наличии контактов на валу отпадает, но существенно ограничиваются возможности стабилизации выходных напряжений.
Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС EA , EB и EC , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.
C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи IA, IB, IC , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно. Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе
e = 2Blwv = 2πBlwDn
Здесь: B – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл;
l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м;
w – количество витков;
v = πDn – линейная скорость движения полюсов ротора относительно статора, м/с;
D – внутренний диаметр сердечника статора, м.
Формула ЭДС показывает, что при неизменной частоте вращения ротора n форма графика переменной ЭДС обмотки якоря (ста- тора) определяется исключительно законом распределения магнитной индукции B в зазоре между статором и полюсами ротора. Если график магнитной индукции в зазоре представляет собой синусоиду B = Bmax sinα , то ЭДС генератора также будет синусоидальной. В синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.
Так, если воздушный зазор δ постоянен (рис. 1.2), то магнитная индукция B в воздушном зазоре распределяется по трапецеидальному закону (график 1). Если же края полюсов ротора «скосить» так, чтобы зазор на краях полюсных наконечников был равен δmax (как это показано на рис. 1.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (график 2), а, следовательно, и график ЭДС, индуцированной в обмотке генератора, приблизится к синусоиде. Частота ЭДС синхронного генератора f (Гц) пропорциональна синхронной частоте вращения ротора n (об/с)
где p – число пар полюсов.
В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е. p = 1.
Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой n = 50 об/с (n = 3000 об/мин).
Способы возбуждения синхронных генераторов
Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.
В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.
В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.
На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.
Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.
Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.
Асинхронный генератор. Отличия от синхронного
Асинхронные генераторы принципиально отличаются от синхронных отсутствием жесткой зависимости между частотой вращения ротора и вырабатываемой ЭДС. Разницу между этими частотами характеризует коэффициент s — скольжение.
здесь:
n — частота вращения магнитного поля (частота ЭДС).
n r — частота вращения ротора.
Более подробно с расчётом скольжения и частоты можно ознакомиться в статье: асинхронные генераторы. Частота.
В обычном режиме электромагнитное поле асинхронного генератора под нагрузкой оказывает тормозной момент на вращения ротора, следовательно, частота изменения магнитного поля меньше, поэтому скольжение будет отрицательным. К генераторам, работающим в области положительных скольжений, можно отнести асинхронные тахогенераторы и преобразователи частоты.
Асинхронные генераторы в зависимости от конкретных условий применения выполняются с короткозамкнутым, фазным или полым ротором. Источниками формирования необходимой энергии возбуждения ротора могут являться статические конденсаторы или вентильные преобразователи с искусственной коммутацией вентилей.
Асинхронные генераторы можно классифицировать по способу возбуждения, характеру выходной частоты (изменяющаяся, постоянная), способу стабилизации напряжения, рабочим областям скольжения, конструктивному выполнению и числу фаз.
Последние два признака характеризуют конструктивные особенности генераторов.
Характер выходной частоты и методы стабилизации напряжения в значительной степени обусловлены способом образования магнитного потока.
Классификация по способу возбуждения является основной.
Можно рассмотреть генераторы с самовозбуждением и с независимым возбуждением.
Самовозбуждение в асинхронных генераторах может быть организовано:
а) с помощью конденсаторов, включенных в цепь статора или ротора или одновременно в первичную и вторичную цепи;
б) посредством вентильных преобразователей с естественной и искусственной коммутацией вентилей.
Независимое возбуждение может осуществляться от внешнего источника переменного напряжения.
По характеру частоты самовозбуждающиеся генераторы разделяются на две группы. К первой из них относятся источники практически постоянной (или постоянной) частоты, ко второй переменной (регулируемой) частоты. Последние применяются для питания асинхронных двигателей с плавным изменением частоты вращения.
Более подробно рассмотреть принцип работы и конструктивные особенности асинхронных генераторов планируется рассмотреть в отдельных публикациях.
Асинхронные генераторы не требуют в конструкции сложных узлов для организации возбуждения постоянным током или применения дорогостоящих материалов с большим запасом магнитной энергии, поэтому находят широкое применение у пользователей передвижных электроустановок по причине своей простоты и неприхотливости в обслуживании. Используются для питания устройств, не требующих жёсткой привязки к частоте тока.
Техническим достоинством асинхронных генераторов можно признать их устойчивость к перегрузкам и коротким замыканиям.
С некоторой информацией по мобильным генераторным установкам можно ознакомиться на странице:
Дизель-генераторы.
Асинхронный генератор. Характеристики.
Асинхронный генератор. Стабилизация.
Замечания и предложения принимаются и приветствуются!
Асинхронный режим. Причины возникновения и признаки асинхронного режима
Страницы работы
Содержание работы
Асинхронный режим. Причины возникновения и признаки асинхронного режима.
Асинхронные режимы – режимы работы электрической системы при большом отклонении скорости вращения роторов генераторов или двигателей от синхронной: работа синхронной машины при потере возбуждения, процессы ресинхронизации после нарушения устойчивости, самосинхронизация генераторов, автоматическое повторное включение с самосинхронизацией или без контроля синхронизма, асинхронный пуск двигателей, компенсаторов, самозапуск двигателей.
Причины выпадения из синхронизма генераторов:
1. Потеря возбуждения генератора.
2. Нарушение динамической устойчивости.
3. Нарушение статической устойчивости.
Следует различать большие качания и асинхронный ход. При больших качаниях угол d достигает определенного величины начинает уменьшаться. При асинхронном ходе вектор Е хотя бы одной из станций изменяться на угол больше 360°. При больших качаниях характерен провал в кривой мощности, появляющийся при переходе угла за 90°, а для асинхронного хода характерно периодическое изменение знака мощности
Рис.3 – Режим больших качаний
Рис.3 – Режим асинхронного хода
Процесс выпадения из синхронизма.
Вследствие, например, отключения линии происходит переход с характеристики Р I на характеристику Р II (точки 1-2). В точке 2 на ротор генератора действует избыточный ускоряющий момент под действием которого увеличивается скорость вращения генератора и появляется скольжение.
В точке 3 снова включается линия и происходит переход с характеристики Р II на Р I (точки 3-4).
В точке 4 на ротор генератора начинает действовать избыточный тормозящий момент и w начинает уменьшаться. Поскольку площадка ускорения больше площадки возможного торможения, то к моменту достижения dкр (точка5) скорость не успевает уменьшиться до синхронной и следовательно скольжение не достигает нулевого значения, после точки 5 на ротор генератора снова действует избыточный ускоряющий момент и следовательно увеличивается w и s. При скорости вращения больше синхронной, генератор, работая как асинхронный, выдает также активную асинхронную мощность, т.е. с появлением скольжения появляется асинхронная мощность.
C увеличением w вступает в действие регулятор скорости вращения турбины, который перекрывает клапаны пускопаротурбины и следовательно уменьшает мощность турбины. В точке 6 мощность турбины равна асинхронной мощности, после чего наступает установившейся асинхронный ход, т.е. увеличение угла d происходит с одной и той же средней скоростью.
Переходной процесс асинхронного режима описывается следующим уравнением:
Исходя из схемы замещения асинхронной машины:
Из-за наличия синхронной мощности S не будет величиной постоянной, оно будет пульсировать около Scр.
Асинхронная мощность также пульсирует около некоторого среднего значения из-за наличия нессиметрии (явнополюсность, одноосная обмотка возбуждения).
Рис.8
Для большинства синхронных машин асинхронный ход не представляет опасности, турбогенераторы могут развивать мощность, соизмеримую с номинальной. Недопустимость асинхронного режима связана с опасностью нарушения устойчивости остальной части системы, в которой генераторы работают синхронно. В этом режим асинхронно работающий генератор обычно поглощает из системы значительную реактивную мощность, что может приводить к снижению напряжения всей системы, создавая опасность нарушения устойчивости остальных генераторов и двигателей.
Во время асинхронного хода изменяется не только мощность, но ток статора и ротора, а также результирующее потокосцепление обмотки возбуждения.
Возможность асинхронного хода и его длительность зависят от условий работы системы и опасности повреждения самого генератора (механические усилия, нагрев ротора и статора). Турбогенератору при потере возбуждения разрешается работать от 15 до 30 мин, без потери возбуждения несколько меньше. Если за это время синхронную работу восстановить не удастся, то генератор должен быть отключен от сети.
Наличие асинхронного хода может оказать воздействие на поведение системы, т.е. необходимо проверить режим остальной системы, выяснить его влияние на работу нагрузки, проанализировать поведение РЗ и устройств автоматики (могут работать неправильно).
Источник: